OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 9 — Mar. 20, 2010
  • pp: 1651–1661

Characterization and reduction of reabsorption losses in luminescent solar concentrators

Lindsey R. Wilson, Brenda C. Rowan, Neil Robertson, Omar Moudam, Anita C. Jones, and Bryce S. Richards  »View Author Affiliations

Applied Optics, Vol. 49, Issue 9, pp. 1651-1661 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effects of excitation wavelength on the optical properties (emission spectrum and quantum yield) of a luminescent solar concentrator (LSC) containing a fluorescent organic dye (Lumogen F Rot 305) are studied. Excitation at wavelengths on the long-wavelength edge of the absorption spectrum of the dye results in redshifted emission, but the quantum yield remains constant at 100%. The origin of this effect and its consequences are discussed. The extent of the long-wavelength tail of the absorption spectrum of the dye is determined and the importance in reabsorption losses is shown. The optical efficiencies and photon transport probabilities of LSCs containing either an organic dye or a rare-earth lanthanide complex are compared using ray-tracing simulations and experiment. The optical efficiency is shown to depend strongly on the Stokes shift of the fluorophore. The lanthanide complex, which has a very large Stokes shift, exhibits a higher optical efficiency than the dye (64% cf. 50%), despite its lower quantum yield (86% cf. 100%).

© 2010 Optical Society of America

OCIS Codes
(250.5460) Optoelectronics : Polymer waveguides
(260.2510) Physical optics : Fluorescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(350.6050) Other areas of optics : Solar energy

ToC Category:
Physical Optics

Original Manuscript: January 12, 2010
Manuscript Accepted: February 1, 2010
Published: March 16, 2010

Lindsay R. Wilson, Brenda C. Rowan, Neil Robertson, Omar Moudam, Anita C. Jones, and Bryce S. Richards, "Characterization and reduction of reabsorption losses in luminescent solar concentrators," Appl. Opt. 49, 1651-1661 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1. Theory of operation and techniques for performance evaluation,” Appl. Opt. 18, 3090-3110 (1979). [CrossRef]
  2. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 2. Experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20, 3733-3754 (1981). [CrossRef]
  3. A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123-139 (1977). [CrossRef]
  4. A. Goetzberger, “Fluorescent solar energy collectors: operating conditions with diffuse light,” Appl. Phys. 16, 399-404 (1978). [CrossRef]
  5. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15, 2299-2300 (1976). [CrossRef]
  6. M. Sidrach de Cardona, M. Carrascosa, F. Meseguer, F. Cusso, and F. Jaque, “Outdoor evaluation of luminescent solar concentrator prototypes,” Appl. Opt. 24, 2028-2032 (1985). [CrossRef]
  7. G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11, 303-317 (1989). [CrossRef]
  8. J. M. Drake, M. L. Lesiecki, J. Sansregret, and W. R. L. Thomas, “Organic dyes in PMMA in a planar luminescent solar collector: a performance evaluation,” Appl. Opt. 21, 2945-2952 (1982). [CrossRef]
  9. P. S. Friedman and C. R. Parent, Luminescent Solar Concentrator Development--Final Subcontract Report, contract DE-AC02-83CH10093 (U.S. Department of Energy, 1984).
  10. S. J. Gallagher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: Device optimisation using spectroscopic techniques,” Solar Energy 81, 540-547 (2007). [CrossRef]
  11. S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Solar Energy 81, 813-821 (2007). [CrossRef]
  12. D. J. Farrell, A. J. Chatten, A. Buchtemann, and K. W. J. Barnham, “Fabrication, characterisation and modelling of quantum dot solar concentrator stacks,” in IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 217-200.
  13. V. Pilla, L. P. Alves, E. Munin, and T. T. Pacheco, “Radiative quantum efficiency of CdSe/ZnS quantum dots suspended in different solids,” Opt. Commun. 280, 225-229 (2007). [CrossRef]
  14. H. Lu and J. Ballato, “Synthesis and characterization of Er3+-doped sol-gel silica containing vanadium oxide nanotubes,” J. Am. Ceram. Soc. 89, 3573-3576 (2006). [CrossRef]
  15. G. A. Kumar, C. W. Chen, R. Riman, S. Chen, D. Smith, and J. Ballato, “Optical properties of a transparent CaF2:Er3+ fluoropolymer nanocomposite,” Appl. Phys. Lett. 86, 241105 (2005). [CrossRef]
  16. J. Ballato, R. E. Riman, and E. Snitzer, “Sol-gel synthesis of rare-earth-doped lanthanum halides for highly efficient 1.3 μm optical amplification,” Opt. Lett. 22, 691-693 (1997). [CrossRef]
  17. R. W. Olson, R. F. Loring, and M. D. Fayer, “Luminescent solar concentrators and the reabsorption problem,” Appl. Opt. 20, 2934-2940 (1981). [CrossRef]
  18. M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763-6768(2008). [CrossRef]
  19. B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron. 14, 1312-1322 (2008). [CrossRef]
  20. J. Ballato, S. Foulger, and D. W. Smith Jr., “Optical properties of perfluorocyclobutyl polymers,” J. Opt. Soc. Am. B 20, 1838-1843 (2003). [CrossRef]
  21. Y. Hasegawa, K. Sogabe, Y. Wada, and S. Yanagida, “Low-vibrational luminescent polymers including tris (bis-perfluoromethane and ethanesulfonylaminate) neodymium(III) with 8 coordinated DMSO-d6,” J. Lumin. 101, 235-224 (2003). [CrossRef]
  22. J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93, 176-182 (2009). [CrossRef]
  23. P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through the use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19, 2714-2719 (2009). [CrossRef]
  24. O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. 6649-6651(2009). [CrossRef]
  25. S. Biju, D. B. A. Raj, M. L. P. Reddy, and B. M. Kariuki, “Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic beta-diketonate complexes with bidentate nitrogen donors,” Inorg. Chem. 45, 10651-10660 (2006). [CrossRef]
  26. M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven, “The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes,” Phys. Chem. Chem. Phys. 4, 1542-1548 (2002). [CrossRef]
  27. A. Burgers, L. Sloof, A. Buchtemann, and J. van Roosmalen, “Performance of single layer luminescent concentrators with multiple dyes,” in IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 198-201.
  28. A. R. Burgers, L. H. Slooff, R. Kinderman, and J. A. M. van Roosmalen, “Modelling of luminescent concentrators by ray-tracing,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2005), pp. 394-397.
  29. M. Carrascosa, S. Unamuno, and F. Agullo-Lopez, “Monte Carlo simulation of the performance of PMMA luminescent solar collectors,” Appl. Opt. 22, 3236-3241 (1983). [CrossRef]
  30. B. S. Richards and K. R. McIntosh, “Ray-tracing simulations of luminescent solar concentrators containing multiple luminescent species,” in Proceedings of the 21st European Photovoltaic Solar Energy Conference (WIP, 2006), pp. 185-188.
  31. T. J. J. Meyer, J. Hlavaty, L. Smith, E. R. Freniere, and T. Markvart, “Ray tracing techniques applied to modelling of fluorescent solar collectors,” Proc. SPIE 7211, 72110N(2009). [CrossRef]
  32. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).
  33. BASF Lumogen F Dyes product datasheets, http://www.dispersions-pigments.basf.com/portal/basf/ien/dt.jsp?setCursor=1_422514 (last accessed 05/01/10).
  34. R. Iden and G. Seybold, “Perylene compounds,” U.S. patent 4,618,694 (21 Oct. 1986).
  35. G. B. Smith and J. B. Franklin, “Sunlight collecting and transmitting system,” U.S. patent 5,548,490 (20 Aug. 1996).
  36. M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169(1997). [CrossRef]
  37. L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethylmethacrylate for luminescent solar concentrators,” Appl. Opt. 48, 212-220 (2009). [CrossRef]
  38. R. Vieweg and F. Esser, “Polymethacrylate,” in Kunsstoff-Handbuch, R. Vieweg and F. Esser, ed. (Carl Hanser Verlag, 1975), Vol. IX, pp. 15-23.
  39. J. Sansregret, J. M. Drake, W. R. L. Thomas, and M. L. Lesiecki, “Light transport in planar luminescent solar concentrators: the role of DCM self-absorption,” Appl. Opt. 22, 573-577 (1983). [CrossRef]
  40. A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Solar Energy 76, 655-667 (2004). [CrossRef]
  41. M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 93, 1345-1350 (2009). [CrossRef]
  42. P. S. Friedman, “Luminescent solar concentrators,” Opt. Eng. 20, 887-892 (1981).
  43. F. Wurthner, C. Thalacker, D. Siegmar, and C. Tschierske, “Fluorescent J-type aggregates and columnar mesophases of perylene bisimide dyes,” Chem. Eur. J. 7, 2245-2253(2001). [CrossRef]
  44. F. Wurthner, “Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures,” Chem. Commun. 1564-1579 (2004). [CrossRef]
  45. L. R. Wilson and B. S. Richards, “High-efficiency dyes for luminescent solar concentrators--photostability, modelling and results,” in Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2008), pp. 510-512.
  46. L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257-259 (2008). [CrossRef]
  47. J. Ballato, S. Foulger, and D. W. Smith Jr., “Optical properties of perfluorocyclobutyl polymers. II. Theoretical and experimental attenuation,” J. Opt. Soc. Am. B 21, 958-967 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited