OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 9 — Mar. 20, 2010
  • pp: 1682–1686

Highly birefringent photonic crystal fiber based on a double-hole unit

Daru Chen and Genzhu Wu  »View Author Affiliations

Applied Optics, Vol. 49, Issue 9, pp. 1682-1686 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (532 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel highly birefringent photonic crystal fiber (PCF) based on a double-hole unit. Because of the effect of the double-hole unit in which double airholes can be effectively viewed as elliptical airholes, the proposed PCF can achieve birefringence similar to that of an elliptical-hole PCF with high birefringence even up to the order of 0.01 and still avoid the inherent challenge to fabricate an elliptical-hole PCF. The proposed PCF also has a lower confinement loss than an elliptical-hole PCF with the same air-filling fraction.

© 2010 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 4, 2010
Revised Manuscript: February 20, 2010
Manuscript Accepted: February 23, 2010
Published: March 17, 2010

Daru Chen and Genzhu Wu, "Highly birefringent photonic crystal fiber based on a double-hole unit," Appl. Opt. 49, 1682-1686 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  2. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305-330 (1999). [CrossRef]
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999). [CrossRef] [PubMed]
  4. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847-851(2003). [CrossRef] [PubMed]
  5. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327(2000). [CrossRef]
  6. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  7. A. Ferrando, E. Silvestre, J. J. Miret, and Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790-792 (2000). [CrossRef]
  8. J. C. Knight and D. V. Skryabin, “Nonlinear waveguide optics and photonic crystal fibers,” Opt. Express 15, 15365-15376(2007). [CrossRef] [PubMed]
  9. S. Février, P. Viale, F. Gérôme, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39, 1240-1242 (2003). [CrossRef]
  10. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29, 1974-1976 (2004). [CrossRef] [PubMed]
  11. H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657-658 (2004). [CrossRef]
  12. X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer,” Appl. Phys. Lett. 90, 151113-151115 (2007). [CrossRef]
  13. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11, 818-823 (2003). [CrossRef] [PubMed]
  14. X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1626-1628 (2005). [CrossRef]
  15. D. Chen, “Stable multi-wavelength erbium-doped fiber laser based on photonic crystal fiber Sagnac loop filter,” Laser Phys. Lett. 4, 437-439 (2007). [CrossRef]
  16. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395-1397(1999). [CrossRef]
  17. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002). [CrossRef] [PubMed]
  18. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299-309 (2004). [CrossRef] [PubMed]
  19. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001). [CrossRef]
  20. A. Ortigosa-Blance, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667-1669(2004). [CrossRef]
  21. P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004). [CrossRef]
  22. M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44, 2652-2658 (2005). [CrossRef] [PubMed]
  23. D. Chen and L. Shen, “Highly birefringent elliptical-hole photonic crystal fibers with double defect,” J. Lightwave Technol. 25, 2700-2705 (2007). [CrossRef]
  24. K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384-1386 (2003). [CrossRef]
  25. J. Ju, W. Jin, and M. S. Demokan, “Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm,” J. Lightwave Technol. 24, 825-830 (2006). [CrossRef]
  26. D. J. J. Hu, P. Shum, C. Lu, X. Yu, G. Wang, and G. Ren, “Holey fiber design for single-polarization single-mode guidance,” Appl. Opt. 48, 4038-4043 (2009). [CrossRef] [PubMed]
  27. M. J. steel and R. M. Osgood, “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26, 229-231 (2001). [CrossRef]
  28. N. A. Issa, M. A. V. Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29, 1336-1338(2004). [CrossRef] [PubMed]
  29. F. Beltrán-Mejía, G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. Cordeiro, “Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes,” Opt. Lett. 35, 544-546 (2010). [CrossRef] [PubMed]
  30. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  31. D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited