OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 5, Iss. 10 — Oct. 1, 1966
  • pp: 1474–1486

Crystalline Solid Lasers

Z. J. Kiss and R. J. Pressley  »View Author Affiliations


Applied Optics, Vol. 5, Issue 10, pp. 1474-1486 (1966)
http://dx.doi.org/10.1364/AO.5.001474


View Full Text Article

Enhanced HTML    Acrobat PDF (1806 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

No abstract available.

History
Original Manuscript: June 23, 1966
Revised Manuscript: July 15, 1966
Published: October 1, 1966

Citation
Z. J. Kiss and R. J. Pressley, "Crystalline Solid Lasers," Appl. Opt. 5, 1474-1486 (1966)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-5-10-1474


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. L. Schawlow, C. J. Townes, “Infrared and optical masers,” Phys. Rev., vol. 112, p. 1940, December1958. [CrossRef]
  2. T. H. Maiman, “Stimulated optical radiation in ruby masers,” Nature, vol. 187, pp. 493–494, August1960. [CrossRef]
  3. P. P. Sorokin, M. J. Stevenson, “Stimulated infrared emission from trivalent uranium,” Phys. Rev. Lett., vol. 5, pp. 557–559, December1960. [CrossRef]
  4. L. F. Johnson, G. D. Boyd, K. Nassau, R. R. Soden, “Continuous operation of the CaWO4:Nd3+optical maser,” Proc. IRE (Correspondence), vol. 50, p. 213, February1962.
  5. A summary of the materials work up to 1963 can be found in Proceedings of the Third International Congress of Quantum Electronics, P. Grivet, N. Bloombergen, Eds. New York: Columbia University Press, 1964.
  6. F. J. McClung, R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys., vol. 33, p. 828, 1962. [CrossRef]
  7. U. K. Voronko, A. A. Kamynsky, V. V. Osiko, A. N. Prokhorov, Jour. of Exp. and Theor. Phys. USSR (Letters to the Editor), vol. 1, no. 1, p. 5, 1965.
  8. See e.g., Z. J. Kiss, “Zeeman tuning of the CaF2:Tm2+optical maser,” Appl. Phys. Lett., vol. 2, pp. 61–62, February1963. [CrossRef]
  9. A. Yariv, J. P. Gordon, “The laser,” Proc. IEEE, vol. 51, pp. 4–29, January1963. [CrossRef]
  10. See, e.g., G. Birnbaum, “Optical masers,” in Advances in Electronics and Electron Physics, (supplement 2). New York: Academic, 1964.
  11. A. A. Kaminsky, B. B. Osiko, “Inorganic ionic crystalline laser materials,” Isv. Akad. Nauk USSR Inorganic Materials, vol. 1, p. 2049, December1965.
  12. R. C. Linares, “Properties and growth of flux ruby,” J. Phys. Chem. Solids, vol. 26, p. 1817, 1965. [CrossRef]
  13. A. E. Paladino, R. D. Reiter, “Chochralski growth of sapphire,” J. Am. Ceram. Soc., vol. 47, p. 465, 1964. [CrossRef]
  14. See, e.g., H. Guggenheim, “Growth of highly perfect fluoride single crystals for optical masers,” J. Appl. Phys., vol. 34, p. 2482, 1963. [CrossRef]
  15. K. Napan, A. M. Broger, “Calcium tungstate: Czochralski growth, perfection and substitution,” J. Appl. Phys., vol. 33, p. 3064, 1962. [CrossRef]
  16. See, e.g., L. G. Van Uitert, W. J. Grodkiewicz, E. F. Dearborn, “Growth of large optical quality yttrium and rare-earth aluminum garnets,” J. Am. Ceram. Soc., vol. 48, p. 105, 1965. [CrossRef]
  17. F. R. Charvat, R. M. Youmans, “Characteristics of melt pulled rare-earth garnets,” American Ceramic Soc. Bull., p. 409, April1965.
  18. D. E. McCumber, M. D. Sturge, “Linewidth and temperature shift of the Rlines in ruby,” J. Appl. Phys., vol. 34, p. 1682, June1963. [CrossRef]
  19. See, e.g., G. F. Imbush, W. M. Yeu, A. L. Schawlow, D. E. McCumber, M. D. Sturge, “Temperature dependence of the width and position of the 2E→4A2fluorescence lines of Cr3+and V2+in MgO,” Phys. Rev., vol. 133, p. A 1029, February1964.
  20. See, e.g., S. Yatsiv, “Spontaneous emission of phonons and spectral linewidths of some rare-earth ions in crystals,” Physica, vol. 28, p. 521, 1962. [CrossRef]
  21. A. Kiel, “Multi-phonon spontaneous emission in paramagnetic crystals.” [5, p. 765].
  22. See, e.g., Z. J. Kiss, “Energy levels of Dy3+in CaF2, SrF2and BaF2,” Phys. Rev., vol. 137, pp. A 1749–1760, March1965.
  23. See, e.g., G. H. Dieke, B. Pandey, “Spectroscopy of trivalent rare-earths,” in Proc. of the Symposium on Optical Masers. Brooklyn, N. Y.: Polytechnic Press, 1963, pp. 327–346.
  24. See, e.g., B. R. Judd, Operator Techniques in Atomic Spectroscopy. New York: McGraw-Hill, 1963.
  25. E. Loh, “Lowest 4f-5d transition of trivalent rare-earth ions in CaF2,” Phys. Rev., to be published.
  26. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev., vol. 127, pp. 750–761, August1962. [CrossRef]
  27. N. C. Change, “Fluorescence and stimulated emission from trivalent europium in yttrium oxide,” J. Appl. Phys., vol. 34, 3500, 1963. [CrossRef]
  28. R. Solomon, L. Mueller, “Stimulated emission at 5983 Å from Pr3+in LaF3,” Appl. Phys. Lett., vol. 3, p. 135, 1963. [CrossRef]
  29. D. S. McClure, Z. J. Kiss, “Survey of the spectra of the divalent rare-earth ions in cubic crystals,” J. Chem. Phys., vol. 39, p. 3251, 1963. [CrossRef]
  30. See, e.g., P. P. Feofilov, “Monocristaux du type Fluorite Activds comme Mileux pour produire une Emission Stimulee,” [5, p. 1079].
  31. See, e.g., P. P. Sorokin, “Transitions of Re3+ions in alkaline earth halide lattices,” [5, p. 985].
  32. Z. J. Kiss, P. N. Yocom, “Stable divalent rare-earth alkaline earth halide systems,” J. Chem. Phys., vol. 41, p. 1511, 1964. [CrossRef]
  33. W. Hayes, J. W. Twidell, “Paramagnetic resonance of divalent lanthanum in irradiated CaF2,” Proc. Phys. Soc., vol. 82, p. 330, 1963. [CrossRef]
  34. See, e.g., Z. J. Kiss, H. A. Weakliem, “Stark effect of 4f state and linear crystal field in BaCIF: Sm2+,” Phys. Rev. Letts., vol. 15, p. 457, 1965. [CrossRef]
  35. L. F. Johnson, R. E. Dietz, H. S. Guggenheim, “Optical maser oscillation ion of Ni2+in MgF2involving simultaneous emission of phonons,” Phys. Rev. Lett., vol. 11, p. 318, 1963. [CrossRef]
  36. L. F. Johnson, R. E. Dietz, H. S. Guggenheim, “Spontaneous and stimulated emission from Co2+ions in MgF2& ZnF2,” Appl. Phys. Lett., vol. 5, p. 21, 1963. [CrossRef]
  37. Z. J. Kiss, R. C. Duncan, “Cross-pumped Cr3+:Nd3+:YAG laser system,” Appl. Phys. Lett., vol. 5, p. 200, 1964. [CrossRef]
  38. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phvs., vol. 21, p. 836, 1953. [CrossRef]
  39. L. F. Johnson, J. E. Geusic, L. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+, Yb3+, and Er3+ions in yttrium aluminum garnet,” Appl. Phys. Lett., vol. 7, pp. 127–129, September1965. [CrossRef]
  40. M. B. Soffer, R. H. Hoskins, “Energy transfer and CW laser action in Tm3+:Er2O3,” Appl. Phys. Lett., vol. 6, p. 200, 1965. [CrossRef]
  41. R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, “Coherence, narrowing, directionality, and relaxation oscillations in the light emission from ruby,” Phys. Rev. Lett., vol. 5, pp. 303–305, October1960. [CrossRef]
  42. F. J. McCluny, S. E. Schwartz, F. J. Meyers, “R2line optical maser action in ruby,” J. Appl. Phys., vol. 33, pp. 3139–3140, October1962. [CrossRef]
  43. I. Wieder, L. R. Sarles, “Stimulated optical emission from exchange-coupled ions of Cr+++in Al2O3,” Phys. Rev. Lett., vol. 6, p. 95, 1961. [CrossRef]
  44. A. L. Schawlow, G. E. Devlin, “Simultaneous optical maser action in two ruby satellite lines,” Phys. Rev. Lett., vol. 6, p. 96, 1961. [CrossRef]
  45. E. G. Woodbury, W. K. Nag, “Ruby laser operation in the near IR,” Proc. IRE (Correspondence), vol. 50, p. 2367, November1962.
  46. L. F. Johnson, R. A. Thomas, “Maser oscillations at 0.9 and 1.35 microns in CaWO4:Nd3+,” Phys. Rev., vol. 131, p. 2038, 1963. [CrossRef]
  47. L. F. Johnson, “Optical maser characteristics of Nd3+in CaF2,” J. Appl. Phys., vol. 33, p. 756, 1962. [CrossRef]
  48. R. C. Duncan, “Continuous room-temperature Nd3+:CaMoO4laser,” J. Appl. Phys., vol. 36, p. 874, 1965. [CrossRef]
  49. J. E. Geusic, H. W. Marcos, L. G. Van Uitert, “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium, and gadolinium garnets,” Appl. Phys. Lett., vol. 4, p. 182, 1964. [CrossRef]
  50. L. F. Johnson, “Optical maser characteristics of rare-earth ions in crystals,” J. Appl. Phys., vol. 34, p. 897, 1963. [CrossRef]
  51. A. Yariv, S. P. S. Porto, K. Nassau, “Optical maser emission from trivalent praseodymium in calcium tungstate,” J-Appl. Phys., vol. 33, p. 2519, 1962. [CrossRef]
  52. C. F. Johnson, J. E. Geusic, C. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+and Er3+ions in yttrium aluminum garnet,” Appl. Phys. Lett., vol. 7, p. 127, 1965. [CrossRef]
  53. C. F. Johnson, J. E. Geusic, C. G. Van Uitert, “Efficient high-power coherent emission from Ho3+ions in yttrium aluminum garnet, assisted by energy transfer,” Appl. Phys. Lett., vol. 8, p. 200, 1966. [CrossRef]
  54. Z. J. Kiss, R. C. Duncan, “Pulsed and continuous optical maser action in CaF2: Dy2+,” Proc. IRE (Correspondence), vol. 50, pp. 1531–1532, June1962.
  55. A. A. Ballman, S. P. S. Porto, A. Yariv, “Calcium niobate Ca(NbO3)2—a new laser host material,” J. Appl. Phlys., vol. 34, p. 3155, 1963. [CrossRef]
  56. G. D. Boyd, R. J. Collins, S. P. S. Porto, A. Yariv, W. A. Hargreves, “Excitation, relaxation, and continuous maser action in the 2.613 micron transition of CaF2:U3+masers,” Phys. Rev. Lett., vol. 8, pp. 269–272, April1962. [CrossRef]
  57. S. P. S. Porto, A. Yariv, “Excitation, relaxation and optical maser action at 2.407 μin SrF2:U3+,” Proc. IRE, vol. 50, p. 153, 1962.
  58. P. P. Sorokin, M. J. Stevenon, “Stimulated emission from CaF2:U3++CaF2:Sm2+,” in Advances in Quantum Electronics, J. R. Singer, Ed. New York: Columbia University Press, N. Y., and London, England: pp. 65–77, 1961.
  59. P. P. Sorokin, M. J. Stevenson, J. R. Lankard, D. C. Petht, “Spectroscopy and optical maser action in SrF2:Sm2+,” Phys. Rev., vol. 127, p. 503, 1962. [CrossRef]
  60. Z. J. Kiss, R. C. Duncan, “Pulsed and continuous optical maser action in CaF2:Dy2+,” Proc. IRE (Correspondence), vol. 50, pp. 1531–1532, June1962.
  61. Z. J. Kiss, R. C. Duncan, “Optical maser action in CaF2:Tm2+,” Proc. IRE (Correspondence), vol. 50, pp. 1532–1533, June1962.
  62. R. C. Duncan, Z. J. Kiss, “Continuously operating CaF2:Tm2+optical maser,” Appl. Phys. Lett., vol. 3, p. 23, 1963. [CrossRef]
  63. R. J. Pressley, J. R. Collard, P. V. Goedertier, F. Sterzer, W. Zernik, “Solid state laser explorations.” RCA Laboratories, Princeton, N. J., Tech. Rept. AFAL-TR-66-129, Contract AF33(615)2645, June1966.
  64. J. P. Wittke, J. R. Collard, R. C. Duncan, P. V. Goedertier, Z. J. Kiss, R. J. Pressley, F. Sterzer, T. Walsh, “Solid state laser explorations.” RCA Laboratories, Princeton, N. J., Tech. Rept. AFAL-TR-64-334, Contract AF33(615)1096, Final Rept., January1965 (also R. J. Pressley, J. P. Wittke, to be published.)
  65. J. E. Geusic, “A repetitively Qswitched continuously pumped YAG:Nd laser,” Appl. Phys. Lett., vol. 6, p. 175, 1965. [CrossRef]
  66. J. E. Geusic, “Materials for solid state optical devices,” NEREM Rec., p. 78, 1966.
  67. S. A. Ochs, J. I. Pankove, “Injection-luminescence pumping of a CaF2:Dy2+laser,” Proc. IEEE, vol. 52, pp. 713–714, June1964. [CrossRef]
  68. D. Roess, “Exfocal pumping of optical masers in elliptical mirrors,” Appl. Opt., vol. 3, p. 259, 1964. [CrossRef]
  69. D. Roess, “Room temperature CW ruby laser,” Microwaves, p. 5, April1966.
  70. V. Evtuhov, “Continuous operation of a ruby laser at room temperature,” Appl. Phys. Lett., vol. 6, p. 75, 1965. [CrossRef]
  71. I. J. D’Haenens, V. Evtuhov, “Temperature and concentration effects in a ruby laser,” [5, p. 1131].
  72. R. J. Pressley, P. V. Goedertier, “A high efficiency, high power solid state laser,” presented at the 1965 Internat’l Electron Device Meeting, Washington, D. C.
  73. R. G. Schlecht, C. H. Church, D. A. Larson, “High efficiency Nal pumping of a continuous Nd3+:YAG laser,” IEEE J. of Quantum Electronics, vol. QE-2, p. xiviii, April1966; also presented at 1966 Internat’l Quantum Electronics Conference, Phoenix, Ariz.
  74. J. E. Jackson, D. M. Yenni, “High power laser operation,” Union Carbide Corp., Linde Div., Indianapolis, Ind. Second Interim Tech. Rept., Contract SRCR-66-4, May1966.
  75. W. R. Sooy, R. S. Congleton, B. E. Dobratz, W. K. Ng, “Dynamic limitation on the attainable inversion in ruby lasers,” [5, p. 1103].
  76. Korad Corporation, Santa Monica, Calif., advertised data on K-1500 ruby system.
  77. H. Pawel, J. R. Sanford, J. H. Wenzel, G. J. Wolga, “Use of dielectric etalon as a reflector for Q-switched laser operation,” Proc. IEEE (Correspondence), vol. 52, pp. 1048–1049, September1964. [CrossRef]
  78. R. Daly, S. D. Sims, “An improved method of mechanical Qswitching using total internal reflection,” Appl. Opt., vol. 3, p. 1063, 1964. [CrossRef]
  79. J. L. Wentz, “Novel laser Q-switching mechanism,” Proc. IEEE (Correspondence), vol. 52, pp. 716–717, June1964. [CrossRef]
  80. P. Kalafas, J. I. Masters, E. M. E. Murray, “Photosensitive liquid used as a nondestructive passive Qswitch,” J. Appl. Phys., vol. 35, p. 2349, 1964. [CrossRef]
  81. B. H. Soffer, “Giant pulse laser operation by a passive reversibly bleachable absorber,” J. Appl. Phys., vol. 35, p. 2551, 1964. [CrossRef]
  82. D. Roess, G. Zeitler, “Quasicontinuous ruby giant pulse laser using a saturable absorber as a Qswitch,” Appl. Phys. Lett., vol. 8, p. 10, 1966. [CrossRef]
  83. J. E. Geusic, H. M. Marcos, L. G. Van Uitert, “A study of the YAG:Nd oscillator,” in Proceedings of the 1965 Physics of Quantum Electronics Conference in San Juan, Puerto Rico, P. Kelley, B. Lax, P. Tannenwald, Eds. New York: McGraw-Hill, 1966, p. 725.
  84. D. E. McCumber, “Intensity fluctuations in the output of CW laser oscillators I,” Phys. Rev., vol. 141, p. 306, 1966. [CrossRef]
  85. L. E. Hargrove, R. F. Fork, M. A. Pollack, “Locking of He–Ne laser modes induced by synchronous intra-cavity modulation,” Appl. Phys. Lett., vol. 5, p. 4, 1964. [CrossRef]
  86. M. H. Crowell, “Characteristics of mode-coupled lasers,” IEEE J. Quantum Electronics, vol. QE-1, pp. 12–20, April1965. [CrossRef]
  87. M. Didomenico, “Small signal analysis of internal (coupling type) modulation of lasers,” J. Appl. Phys., vol. 35, p. 2870, 1964. [CrossRef]
  88. A. Yariv, “Internal modulation in multimode laser oscillators,” J. Appl Phys., vol. 36, p. 388, 1965. [CrossRef]
  89. M. Didomenico, J. E. Geusic, H. M. Marcos, R. G. Smith, “Generation of ultrashort optical pulses by mode locking in YAG:Nd laser,” Appl. Phys. Lett., vol. 8, p. 180, 1966. [CrossRef]
  90. D. Roess, “Single mode operation of a room-temperature CW ruby laser,” Appl. Phys. Left., vol. 8, p. 109, 1966. [CrossRef]
  91. W. W. Rigrod, “The optical ring resonator,” Bell Sys. Tech. J., vol. 44, p. 907, 1965.
  92. V. Evtuhov, A. E. Siegman, “A twisted mode technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt., vol. 4, p. 142, 1965. [CrossRef]
  93. C. L. Tang, H. Statz, G. A. DeMars, D. T. Wilson, “Spectral properties of a single mode ruby laser: evidence of homogeneous broadening of the zero-phonon lines in solids,” Phys. Rev., vol. 136, p. A1, 1964. [CrossRef]
  94. See, e.g., the collection of articles on applications from the Laser Physics and Applications Symposium, Bern, Switzerland, 1964, published in Zeitschrift für Angewandte Mathematik & Physik, vol. 16, 1965, as well as the Digest of Technical Papers from the 1966 International Quantum Electronics Conference in Phoenix, Ariz., April 12, 1966, IEEE J. of Quantum Electronics, vol. QE-2, p. lix, April1966.
  95. An indication of the continuing rapid progress in this field was the announcement just before publication of this improvement in the operation of a Nd3+: YAG laser pumped with a 2500 watt tungsten lamp to obtain 15 watts output. J. E. Geusic, private communication.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited