## Laser Beams and Resonators

Applied Optics, Vol. 5, Issue 10, pp. 1550-1567 (1966)

http://dx.doi.org/10.1364/AO.5.001550

Enhanced HTML Acrobat PDF (2200 KB)

### Abstract

This paper is a review of the theory-of laser beams and resonators. It is meant to be tutorial in nature and useful in scope. No attempt is made to be exhaustive in the treatment. Rather, emphasis is placed on formulations and derivations which lead to basic understanding and on results which bear practical significance.

© 1966 Optical Society of America

**History**

Original Manuscript: July 12, 1966

Published: October 1, 1966

**Citation**

H. Kogelnik and T. Li, "Laser Beams and Resonators," Appl. Opt. **5**, 1550-1567 (1966)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-5-10-1550

Sort: Year | Journal | Reset

### References

- R. H. Dicke, “Molecular amplification and generation systems and methods,” U. S. Patent2 851 652, September9, 1958.
- A. M. Prokhorov, “Molecular amplifier and generator for sub-millimeter waves,” JETP (USSR), vol. 34, pp. 1658–1659, June1958; Sov. Phys. JETP, vol. 7, pp. 1140–1141, December1958.
- A. L. Schawlow, C. H. Townes, “Infrared and optical masers,” Phys. Rev., vol. 29, pp. 1940–1949, December1958. [CrossRef]
- A. G. Fox, T. Li, “Resonant modes in an optical maser,” Proc. IRE(Correspondence), vol. 48, pp. 1904–1905, November1960; “Resonant modes in a maser interferometer,” Bell Sys. Tech. J., vol. 40, pp. 453–488, March1961.
- G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Sys. Tech. J., vol. 40, pp. 489–508, March1961.
- G. D. Boyd, H. Kogelnik, “Generalized confocal resonator theory,” Bell Sys. Tech. J., vol. 41, pp. 1347–1369, July1962.
- G. Goubau, F. Schwering, “On the guided propagation of electromagnetic wave beams,” IRE Trans. on Antennas and Propagation, vol. AP-9, pp. 248–256, May1961. [CrossRef]
- J. R. Pierce, “Modes in sequences of lenses,” Proc. Nat’l Acad. Sci., vol. 47, pp. 1808–1813, November1961.
- G. Goubau, “Optical relations for coherent wave beams,” in Electromagnetic Theory and Antennas. New York: Macmillan, 1963, pp. 907–918.
- H. Kogelnik, “Imaging of optical mode—Resonators with internal lenses,” Bell Sys. Tech. J., vol. 44, pp. 455–494, March1965.
- H. Kogelnik, “On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation,” Appl. Opt., vol. 4, pp. 1562–1569, December1965. [CrossRef]
- A. E. Siegman, “Unstable optical resonators for laser applications,” Proc. IEEE, vol. 53, pp. 277–287, March1965. [CrossRef]
- W. Brower, Matrix Methods in Optical Instrument Design. New York: Benjamin, 1964. E. L. O’Neill, Introduction to Statistical Optics. Reading, Mass.: Addison-Wesley, 1963.
- M. Bertolotti, “Matrix representation of geometrical properties of laser cavities,” Nuovo Cimento, vol. 32, pp. 1242–1257, June1964.V. P. Bykov, L. A. Vainshtein, “Geometrical optics of open resonators,” JETP (USSR), vol. 47, pp. 508–517, August1964. B. Macke, “Laser cavities in geometrical optics approximation,” J. Pys. (Paris), vol. 26, pp. 104A–112A, March1965. W. K. Kahn, “Geometric optical derivation of formula for the variation of the spot size in a spherical mirror resonator,” Appl. Opt., vol. 4, pp. 758–759, June1965. [CrossRef]
- J. R. Pierce, Theory and Design of Electron Beams. New York: Van Nostrand, 1954, p. 194.
- H. Kogelnik, W. W. Rigrod, “Visual display of isolated optical-resonator modes,” Proc. IRE (Correspondence), vol. 50, p. 220, February1962.
- G. A. Deschamps, P. E. Mast, “Beam tracing and applications,” in Proc. Symposium on Quasi-Optics. New York: Polytechnic Press, 1964, pp. 379–395.
- S. A. Collins, “Analysis of optical resonators involving focusing elements,” Appl. Opt., vol. 3, pp. 1263–1275, November1964. [CrossRef]
- T. Li, “Dual forms of the Gaussian beam chart,” Appl. Opt., vol. 3, pp. 1315–1317, November1964. [CrossRef]
- T. S. Chu, “Geometrical representation of Gaussian beam propagation,” Bell Sys. Tech. J., vol. 45, pp. 287–299, February1966.
- J. P. Gordon, “A circle diagram for optical resonators,” Bell Sys. Tech. J., vol. 43, pp. 1826–1827, July1964. M. J. Offerhaus, “Geometry of the radiation field for a laser interferometer,” Philips Res. Rept., vol. 19, pp. 520–523, December1964.
- H. Statz, C. L. Tang, “Problem of mode deformation in optical masers,” J. Appl. Phys., vol. 36, pp. 1816–1819, June1965. [CrossRef]
- A. G. Fox, T. Li, “Effect of gain saturation on the oscillating modes of optical masers,” IEEE J. of Quantum Electronics, vol. QE-2, p. lxii, April1966.
- A. G. Fox, T. Li, “Modes in a maser interferometer with curved and tilted mirrors,” Proc. IEEE, vol. 51, pp. 80–89, January1963. [CrossRef]
- F. B. Hildebrand, Methods of Applied Mathematics. Englewood Cliffs, N. J.: Prentice Hall, 1952, pp. 412–413.
- D. J. Newman, S. P. Morgan, “Existence of eigenvalues of a class of integral equations arising in laser theory,” Bell Sys. Tech. J., vol. 43, pp. 113–126, January1964.
- J. A. Cochran, “The existence of eigenvalues for the integral equations of laser theory,” Bell Sys. Tech. J., vol. 44, pp. 77–88, January1965.
- H. Hochstadt, “On the eigenvalue of a class of integral equations arising in laser theory,” SIAM Rev., vol. 8, pp. 62–65, January1966. [CrossRef]
- D. Gloge, “Calculations of Fabry-Perot laser resonators by scattering matrices,” Arch. Elect. Ubertrag., vol. 18, pp. 197–203, March1964.
- W. Streifer, “Optical resonator modes—rectangular reflectors of spherical curvature,” J. Opt. Soc. Am., vol. 55, pp. 868–877, July1965 [CrossRef]
- T. Li, “Diffraction loss and selection of modes in maser resonators with circular mirrors,” Bell Sys. Tech. J., vol. 44, pp. 917–932, May–June, 1965.
- J. C. Heurtley, W. Streifer, “Optical resonator modes—circular reflectors of spherical curvature,” J. Opt. Soc. Am., vol. 55, pp. 1472–1479, November1965. [CrossRef]
- J. P. Gordon, H. Kogelnik, “Equivalence relations among spherical mirror optical resonators,” Bell Sys. Tech. J., vol. 43, pp. 2873–2886, November1964.
- F. Schwering, “Reiterative wave beams of rectangular symmetry,” Arch. Elect. Übertrag., vol. 15, pp. 555–564, December1961
- A. G. Fox, T. Li, to be published.
- L. A. Vainshtein, “Open resonators for lasers,” JETP (USSR), vol. 44, pp. 1050–1067, March1963; Sov. Phys. JETP, vol. 17, pp. 709–719, September1963.
- S. R. Barone, “Resonances of the Fabry-Perot laser,” J. Appl. Phys., vol. 34, pp. 831–843, April1963. [CrossRef]
- D. Slepian, H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty—I,” Bell Sys. Tech. J., vol. 40, pp. 43–64, January1961.
- D. Slepian, “Prolate spheroidal wave functions, Fourier analysis and uncertainty—IV: Extensions to many dimensions; generalized prolate spheroidal functions,” Bell Svs. Tech. J., vol. 43, pp. 3009–3057, November1964.
- J. C. Heurtley, “Hyperspheroidal functions—optical resonators with circular mirrors,” in Proc. Symposium on Quasi-Optics. New York: Polytechnic Press, 1964, pp. 367–375.
- S. R. Barone, M. C. Newstein, “Fabry-Perot resonances at small Fresnel numbers,” Appl. Opt., vol. 3, p. 1194, October1964. [CrossRef]
- L. Bergstein, H. Schachter, “Resonant modes of optic cavities of small Fresnel numbers,” J. Opt. Soc. Am., vol. 55, pp. 1226–1233, October1965. [CrossRef]
- A. G. Fox, T. Li, “Modes in a maser interferometer with curved mirrors,” in Proc. Third International Congress on Quantum Electronics. New York: Columbia University Press, 1964, pp. 1263–1270.
- H. Kogelnik, “Modes in optical resonators,” in Lasers, A. K. Levine, Ed. New York: Dekker, 1966.

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

### Figures

Fig. 1 |
Fig. 2 |
Fig. 3 |

Fig. 4 |
Fig. 5 |
Fig. 6 |

Fig. 7 |
Fig. 8 |
Fig. 9 |

Fig. 10 |
Fig. 11 |
Fig. 12 |

Fig. 13 |
Fig. 14 |
Fig. 15 |

Fig. 16 |
Fig. 17 |
Fig. 18 |

Fig. 19 |
Fig. 20 |
Fig. 21 |

Fig. 22 |
Fig. 23 |
Fig. 24 |

Fig. 25 |
||

« Previous Article | Next Article »

OSA is a member of CrossRef.