OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 5, Iss. 10 — Oct. 1, 1966
  • pp: 1588–1594

The Antenna Properties of Optical Heterodyne Receivers

A. E. Siegman  »View Author Affiliations


Applied Optics, Vol. 5, Issue 10, pp. 1588-1594 (1966)
http://dx.doi.org/10.1364/AO.5.001588


View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical heterodyne receiver is, in effect, both a receiver and an antenna. As an antenna it has an effective aperture or capture cross section AR(Ω) for plane wave signals arriving from any direction Ω. The wavefront alignment between signal and local-oscillator (LO) beams required for effective optical heterodyning may be summarized in the “antenna theorem” A R ( Ω ) d Ω = [ η 2 ¯ / η ¯ 2 ] λ 2 where the moments of the quantum efficiency η are evaluated over the photosensitive surface. Thus, an optical heterodyne having effective aperture AR for signals arriving within a single main antenna lobe or field of view of solid angle ΩR is limited by the constraint ARΩR≈λ2. Optical elements placed in the signal and/or LO beam paths can vary the trade-off between AR and ΩR but cannot change their product. It is also noted that an optical heterodyne is an insensitive detector for thermal radiation, since a thermal source filling the receiver’s field of view must have a temperature T≈[ln (1+ η ¯)]−1hf/k to be detected with S/N≈1. Optical heterodyning can be useful in practical situations, however, for detecting Doppler shifts in coherent light scattered by liquids, gases, or small particles. Another antenna theorem applicable to this problem says that in a scattering experiment the received power will be ≲λ/4π times the transmitted power, where N is the density of scatterers and σ is the total scattering cross section of a single scatterer. The equality sign is obtained only when a single aperture serves as both transmitting and receiving aperture, or when two separate apertures are optimally focused at short range onto a common volume.

© 1966 Optical Society of America

History
Original Manuscript: March 28, 1966
Published: October 1, 1966

Citation
A. E. Siegman, "The Antenna Properties of Optical Heterodyne Receivers," Appl. Opt. 5, 1588-1594 (1966)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-5-10-1588

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited