OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 5, Iss. 10 — Oct. 1, 1966
  • pp: 1612–1628

Electrooptic Light Modulators

I. P. Kaminow and E. H. Turner  »View Author Affiliations

Applied Optics, Vol. 5, Issue 10, pp. 1612-1628 (1966)

View Full Text Article

Enhanced HTML    Acrobat PDF (2355 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The field of electrooptic light modulation by means of the Pockels and Kerr effects in crystals is summarized with particular attention to communications applications using the optical maser. All available data on electrooptic materials are tabulated, and design considerations and operating principles for various modulator configurations are outlined.

© 1966 Optical Society of America

Original Manuscript: June 30, 1966
Published: October 1, 1966

I. P. Kaminow and E. H. Turner, "Electrooptic Light Modulators," Appl. Opt. 5, 1612-1628 (1966)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Pockels, Lehrbuch der Kristalloptik.Leipzig: Teubner, 1906.
  2. F. Jona, G. Shirane, Ferroelectric Crystals. New York: Macmillan, 1962.
  3. W. Kanzig, Solid State Physics, vol. 4, F. Seitz, D. Turnbull, Eds. New York: Academic, 1957, pp. 1–197. [CrossRef]
  4. B. H. Billings, “The electrooptic effect in uniaxial crystals of the dihydrogen phosphate (XH2PO4) type, Parts I, II, IV,” J. Opt. Soc. Am., vol. 39, pp. 797–801, and pp. 802–808, October1949, J. Opt. Soc. Am. vol. 42, pp. 12–20, January1952. [CrossRef]
  5. R. O’B Carpenter, “The electrooptic effect in crystals of the dihydrogen phosphate type, Part III,” Measurement of coefficients,” J. Opt. Soc. Am., vol. 40, pp. 225–229, April1950.R. O’B. Carpenter, “Electrooptic sound-on-film modulator,” J. Opt. Soc. Am., vol. 25, pp. 1145–1148, November1953. [CrossRef]
  6. D. F. Holshouser, H. Von Foerster, G. L. Clark, “Microwave modulation of light using the Kerr effect,” J. Opt. Soc. Am., vol. 51, pp. 1360–1365, December1961. [CrossRef]
  7. K. D. Froome, R. H. Bradsell, “Distance measurement by means of a light ray modulated at a microwave frequency,” J. Sci. Instr., vol. 38, pp. 458–462, December1961. [CrossRef]
  8. J. F. Nye, Physical Properties of Crystals. Oxford, England: Oxford University Press, 1960.
  9. P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, “Electrooptic coefficients and elastic wave propagation in single-domain ferroelectric lithium tantalate,” Appl. Phys. Letters, vol. 8, pp. 81–82, February1966. [CrossRef]
  10. Incorrect results, however, have been presented in quite recent publications such as G. N. Ramachandran, S. Ramaseshan, “Crystal Optics,” in Handbuch der Physik, vol. 25/1. Berlin: Springer-Verlag, 1961, pp. 1–217. [CrossRef]
  11. C. F. Buhrer, D. Baird, E. M. Conwell, “Optical frequency shifting by electrooptic effect,” Appl. Phys. Letters, vol. 1, pp. 46–49, October1962. [CrossRef]
  12. C. F. Buhrer, L. R. Bloom, D. H. Baird, “Electrooptic light modulation with cubic crystals,” Appl. Opt., vol. 2, pp. 839–846, August1963. [CrossRef]
  13. W. P. Mason, “The elastic, piezoelectric, and dielectric constants of KDP and ADP,” Phys. Rev., vol. 69, pp. 173–194, March1946. [CrossRef]
  14. I. P. Kaminow, “Microwave dielectric properties of NH4H2PO4, KH2ASO4, and partially deuterated KH2PO4,” Phys. Rev., vol. 138, pp. A1539–A1543, May1965. [CrossRef]
  15. F. R. Nash, “Measurements made by substitution inside laser resonator,” unpublished.
  16. T. R. Sliker, S. R. Burlage, “Some dielectric and optical properties of KD2PO4,” J. Appl. Phys., vol. 34, pp. 1837–1840, July1963. [CrossRef]
  17. W. J. Deshotels, “Ultraviolet transmission of dihydrogen arsenate and phosphate crystals,” J. Opt. Soc. Am., vol. 50, p. 865, September1960. [CrossRef]
  18. S. F. Pellicor, “Transmittances of some optical materials for use between 0.19 and 0.34 μ,” Appl. Opt., vol. 3, pp. 361–366, March1964.
  19. E. F. Kingsbury, unpublished memorandum, 1950.
  20. I. P. Kaminow, “Temperature dependence at the complex dielectric constant in KH2PO4-Type crystals and the design of microwave light modulators,” in Quantum Electronics III, P. Grivet, N. Bloembergen, Eds., New York: Columbia University Press, 1964, pp. 1659–1665.
  21. O. G. Blokh, “Dispersion of Γ63for crystals of ADP and KDP,” Sov. Phys.-Cryst., vol. 7, pp. 509–511, January-February 1963.
  22. J. F. Ward, P. A. Franken, “Structure of nonlinear optical phenomena in KDP,” Phys. Rev., vol. 133, pp. A183–A190, January1964. [CrossRef]
  23. I. P. Kaminow, “Strain effects in electrooptic light modulators,” Appl. Opt., vol. 3, pp. 511–515, April1964. [CrossRef]
  24. J. H. Ott, T. R. Sliker, “Linear electrooptic effects in KH2PO4and its isomorphs,” J. Opt. Soc. Am., vol. 54, pp. 1442–1444, December1964. [CrossRef]
  25. C. H. Clayson, “Low-voltage light-amplitude modulation,” Electronic Letters, vol. 2, p. 138, April1966; reply by J. M. Ley, ibid., p. 139. [CrossRef]
  26. B. H. Billings, “The electrooptic effect in crystals and its possible application to distance measure,” in Optics in Metrology, P. Mollet, Ed. New York: Pergamon, 1960, pp. 119–135.
  27. F. Zernike, “Refractive indices of ADP and KDP between 0.2 and 1.5 μ,” J. Opt. Soc. Am., vol. 54, pp. 1215–1220, October1964; V. N. Vishnevskii, I. V. Stefanski, “Temperature dependence of the dispersion of the refractivity of ADP and KDP single crystals,” Opt. and Spectr., vol. 20, pp. 195–196, February1966.
  28. R. A. Phillips, “Temperature variation of the index of refraction of ADP, KDP and deuterated KDP,” J. Opt. Soc. Am., vol. 56, pp. 629–632, May1966. [CrossRef]
  29. D. A. Berlincourt, D. R. Curran, H. Jaffe, Physical Acoustics, vol. I, pt. A, W. P. Mason, Ed. New York: Academic, 1964, pp. 169–260.
  30. I. P. Kaminow, G. O. Harding, “Complex dielectric constant of KH2PO4at 9.2 Gc/sec,” Phys. Rev., vol. 129, pp. 1562–1566, February1963. [CrossRef]
  31. J. M. Ley, “Low voltage light-amplitude modulation,” Electronics Letters, vol. 2, pp. 12–13, January1966. [CrossRef]
  32. I. S. Zheludev, T-Z Ludupov, “Complex dielectric constant of RbH2PO4in the range 8 × 102–3.86 × 1010cps,” Kristallografiia, vol. 10, pp. 764–766, September–October 1965.
  33. A. von Hippel, Dielectric Materials and Applications. New York: Wiley, 1954.
  34. R. M. Hill, S. K. Ichiki, “Paraelectric response of KD2PO4,” Phys. Rev., vol. 130, pp. 150–151, April1961. [CrossRef]
  35. Helen D. Megaw, Ferroelectricity in Crystals. London: Methuen, 1957.
  36. J. E. Geusic, S. K. Kurtz, L. G. van Uitert, S. H. Wemple, “Electrooptic properties of some ABO3perovskites in the paraelectric phase,” Appl. Phys. Letters, vol. 4, pp. 141–143, April1964. [CrossRef]
  37. M. S. Schumate, “Interferometric determination of the principal refractive indices of barium titanate single crystals,” Appl. Phys. Letters, vol. 5, pp. 178–179, November1964. [CrossRef]
  38. J. A. Noland, “Optical absorption of single crystal strontium titanate,” Phys. Rev., vol. 94, p. 724, May1, 1954.R. C. Casella, S. P. Keller, “Polarized light transmission of BaTiO3single crystals,” Phys. Rev., vol. 116, pp. 1469–1473, December1959.C. Hilsum, “Infrared transmission of barium titanate,” J. Opt. Soc. Am., vol. 45, pp. 771–772, September1955.J. T. Last, “Infrared-absorption studies of barium titanate and related materials,” Phys. Rev., vol. 105, pp. 1740–1750, March1957. [CrossRef]
  39. C. J. Johnson, “Some dielectric and electrooptic properties of BaTiO3single crystals,” Appl. Phys. Letters, vol. 7, pp. 221–223, October1965. [CrossRef]
  40. G. Rupprecht, R. O. Bell, “Microwave losses in strontium titanate above the phase transition,” Phys. Rev., vol. 125, pp. 1915–1920, March1962. [CrossRef]
  41. F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys., vol. 37, pp. 388–398, January1966. [CrossRef]
  42. A. R. Johnston, “The strain-free electrooptic effect in single-crystal barium titanate,” Appl. Phys. Letters, vol. 7, pp. 195–198, October1965. [CrossRef]
  43. S. K. Kurtz, “Design of an electrooptic polarization switch for a high capacity high-speed digital light deflection system,” Bell Sys. Tech. J., to be published.
  44. F. S. Chen, J. E. Guesic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “The use of perovskite paraelectrics in beam deflectors and light modulators,” Proc. IEEE(Correspondence), vol. 52, pp. 1258–1259, October1964. [CrossRef]
  45. A. Linz “Some electrical properties of strontium titanate,” Phys. Rev., vol. 91, pp. 753–754, August1953. [CrossRef]
  46. J. K. Hulm, B. T. Matthias, E. A. Long, “A ferromagnetic Curie point in KTaO3at very low temperatures,” Phys. Rev., vol. 79, pp. 885–886, September1950. [CrossRef]
  47. J. E. Guesic, S. K. Kurtz, T. J. Nelson, S. H. Wemple, “Nonlinear dielectric properties of KTaO3near its Curie point,” Appl. Phys. Letters, vol. 2, pp. 185–187, May1963. [CrossRef]
  48. J. P. Remeika, “A method for growing barium titanate single crystals,” J. Am. Chem. Soc., vol. 76, pp. 940–941, February1954. [CrossRef]
  49. A. R. Johnston, J. M. Weingart, “Determination of the low-frequency linear electrooptic effect in tetragonal BaTiO3,” J. Opt. Soc. Am., vol. 55, pp. 828–834, July1965. [CrossRef]
  50. E. H. Turner, Paper 6B-2, presented at the 1966 Intnat’l Quantum Electronics Conf., Phoenix, Ariz., and “High frequency electrooptic coefficients of lithium niobate,” Appl. Phys. Letters, vol. 8, pp. 303–304, June1966.
  51. I. P. Kaminow, “Barium titanate light phase modulator,” Appl. Phys. Letters, vol. 7, pp. 123–125, September1965, “Erratum,” vol. 8, p. 54, January1966. I. P. Kaminow, “Barium titanate light modulator II,” Appl. Phys. Letters, vol. 8, pp. 305–306, June1966. [CrossRef]
  52. The structure and growth of LiNbO3are described and earlier work reviewed in a series of five papers: K. Nassau, H. J. Levinstein, G. M. Loiacono (I and II);S. C. Abrahams, J. M. Reddy, J. L. Bernstein (III);S. C. Abrahams, W. C. Hamilton, J. M. Reddy(IV);S. C. Abrahams, H. J. Levinstein, J. M. Reddy (V);“Ferroelectric lithium niobate,” J. Phys. Chem. Solids. vol. 27, 1966.
  53. B. T. Matthias, J. P. Remeika, “Ferroelectricity in the ilmenite structure,” Phys. Rev., vol. 76, pp. 1886–1887, December1949. [CrossRef]
  54. A. A. Ballman, “The growth of piezoelectric and ferroelectric materials by the Czochralski technique,” J. Am. Ceram. Soc., vol. 48, pp. 112–113, February1965. [CrossRef]
  55. H. J. Levinstein, A. A. Ballman, C. D. Capio, “The domain structure and Curie temperature of single crystal lithium tantalate,” J. Appl. Phys., to be published.
  56. R. T. Denton, Paper 6B-4, presented at the 1966 Internat’l Quantum Electronics Conf., Phoenix, Ariz.
  57. A. Ashkin, G. D. Boyd, J. M. Diedzic, R. G. Smith, A. A. Ballman, H. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Letters, to be published.
  58. G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, A. Savage, “LiNbO3: An efficient phase matchable nonlinear optical material,” Appl. Phys. Letters, vol. 5, pp. 234–236, December1964. [CrossRef]
  59. W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys., vol. 36, pp. 1674–1677, May1965. [CrossRef]
  60. P. V. Lenzo, E. G. Spencer, K. Nassau, “Electrooptic coefficients in lithium niobate,” J. Opt. Soc. Am., vol. 56, pp. 633–636, May1966. [CrossRef]
  61. F. A. Dunn, unpublished. Measurements at 9.3 GHz show that made from −180 degrees C to +100 degrees C ∊3decreases by 15 percent and ∊1=∊2by 7 percent from +100 to −180 degrees C. At room temperature ∊1=45 and ∊3=27. The dielectric loss was too low to be measured, i.e., tan δ<0.01.
  62. E. P. Ippen, “Electrooptic deflection with BaTiO3prisms,” Proc. IEEE, to be published.
  63. E. H. Turner, to be published. These are results of heterodyne measurements on vapor grown and hydrothermally grown crystals.
  64. R. J. Collins, D. A. Kleinman, “Infrared reflectivity of zinc oxide,” J. Phys. Chem. Solids, vol. II, nos. 3–4, pp. 190–194, 1959. [CrossRef]
  65. S. Namba, “Electrooptical effect of zincblende,” J. Opt. Soc. Am., vol. 51, pp. 76–79, January1961. [CrossRef]
  66. S. J. Czyzak, D. C. Reynolds et al., “On the properties of single cubic zinc sulfide crystals, J. Opt. Soc. Am., vol. 44, pp. 864–867, November1954. [CrossRef]
  67. D. Berlincourt, H. Jaffe, L. R. Shiozawa, “Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium,” Phys. Rev., vol. 129, pp. 1009–1017, February1, 1963. [CrossRef]
  68. E. H. Turner, to be published. These are results of heterodyne measurements on crystals termed “primarily hexagonal.”
  69. T. M. Bieniewski, S. J. Czyzak, “Refractive indexes of single hexagonal ZnS and CdS crystals,” J. Opt. Soc. Am., vol. 53, pp. 496–497, April1963. [CrossRef]
  70. R. W. McQuaid, “Electrooptic properties of zinc selenide,” Proc. IRE (Correspondence), vol. 50, pp. 2484–2485, December1962; and “Correction to ‘Electrooptic properties of zinc selenide,’” Proc. IEEE, vol. 51, p. 470, March1963.
  71. D. T. F. Marple, “Refractive index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys., vol. 35, pp. 539–542, March1964. [CrossRef]
  72. M. Aven, D. T. F. Marple, B. Segall, “Some electrical and optical properties of ZnSe,” J. Appl. Phys., supplemental to vol. 32, pp. 2261–2265, October1961. [CrossRef]
  73. T. R. Sliker, J. M. Jost, “Linear electrooptic effect and refractive indices of cubic ZnTe,” J. Opt. Soc. Am., vol. 56, pp. 130–131, January1966. [CrossRef]
  74. E. H. Turner, unpublished. Heterodyne measurement.
  75. C. D. West, “Electrooptic and related properties of crystals with the zinc blend structure,” J. Opt. Soc. Am., vol. 43, p. 335, April1953.
  76. L. M. Belyaev, G. F. Dobrzhanskii, Yu. U. Shaldin, “Electrooptical properties of copper chloride and bromide crystals,” Soviet Phys.-Solid State, vol. 6, p. 2988, June1965.
  77. Landolt-Börnstein, Zahlenwerte, Funktionen, II Band, 8 Teil, Optische Konstanten.
  78. L. M. Belyaev, G. S. Belikova, G. F. Dobrzhanskii, G. B. Netesov, Yu. U. Shaldin, “Dielectric constant of crystals having an electrooptical effect,” Soviet Phys.-Solid State, vol. 6, pp. 2007–2008, February1965.
  79. I. P. Kaminow, unpublished. This value measured at 9.3 GHz. It was also found that tan δ=0.002.
  80. K. K. Thornber, A. J. Kurtzig, E. H. Turner, unpublished. The value r41=0.5 was obtained using pulse methods on relatively low resistivity samples. The 1.06 value was from a heterodyne measurement on a sample having > 105ohm cm resistivity at 75 MHz, where ∊was measured. More weight should be given the larger value.
  81. L. Ho, C. F. Buhrer, “Electrooptic effect of gallium arsenide,” Appl. Opt., vol. 2, pp. 647–648, June1963. [CrossRef]
  82. E. H. Turner, I. P. Kaminow, “Electrooptic effect in gallium arsenide,” J. Opt. Soc. Am., vol. 53, p. 523, April1963.
  83. A. Yariv, C. A. Mead, “Semiconductors as electrooptic modulators for intrared radiation,” Paper 5C-3, presented at the 1966 Internat’l Quantum Electronics Conf.Phoenix, Ariz.; also, T. E. Walsh, “Gallium-arsenide electrooptic modulators,” RCA Rev., to be published.
  84. D. T. F. Marple, “Refractive index of GaAs,” J. Appl. Phys., vol. 35, pp. 1241–1242, April1964. [CrossRef]
  85. C. Hilsum, A. C. Rose-Innes, Semiconducting III–V Compounds. New York: Pergamon, 1961.
  86. K. G. Hambleton, C. Hilsum, B. R. Holeman, “Determination of the effective ionic change of gallium arsenide from direct measurements of the dielectric constant,” Proc. of the Physical Soc., vol. 77, pp. 1147–1148, June1961. [CrossRef]
  87. F. A. Dunn, unpublished. Measurement on semi-insulating material at 9.3 GHz, where tan δ<0.01 also was determined.
  88. D. J. A. Gainon, “Linear electrooptic effect in CdS,” J. Opt. Soc. Am., vol. 54, pp. 270–271, February1964. [CrossRef]
  89. S. J. Czyzak, H. Payne, W. M. Baker, J. E. Manthuruthil, T. M. Bieniewski, “The study of properties of single ZnS and CdS crystals,” Tech. Rept. 6, ONR Contract Nonr 1511(01)NR015218, 1960.
  90. G. H. Heilmeier, “The dielectric and electrooptical properties of a molecular crystal-hexamine,” Appl. Opt., vol. 3, pp. 1281–1287, November1964. [CrossRef]
  91. C. F. Buhrer, L. Ho, J. Zucker, “Electrooptic effect in optically active crystals,” Appl. Opt., vol. 3, pp. 517–521, April1964. [CrossRef]
  92. T. R. Sliker, “Linear electrooptic effects in class 32, 6, 3m, and 4¯3m crystals,” J. Opt. Soc. Am., vol. 54, pp. 1348–1351, November1964. [CrossRef]
  93. R. Nitsche, “Crystal growth and electrooptic effect of bismuth germanate, Bi4(GeO4)3,” J. Appl. Phys., vol. 36, pp. 2358–2360, August1965. [CrossRef]
  94. R. W. McQuaid, “The Pockels effect of hexamethylenetetramine,” Appl. Opt., vol. 2, pp. 320–321, March1963. [CrossRef]
  95. K. K. Thornber, E. H. Turner, “A determination of the electrooptic coefficients of hailynite, langbeinite and gallium phosphide,” unpublished.
  96. W. E. Ford, Dana’s Textbook of Mineralogy, fourth ed. New York: Wiley, 1932. This reference gives the value n=1.535 for the mineral compound K2Mg2(SO4)3and is assumed approximately correct for the other two. Also n≈ 1.572 for K2Mn2(SO4)3.
  97. R. W. McQuaid, “Cubic piezoelectric crystals for electro-optic modulation,” 1963 Proc. Nat’l Aerospace Electronics Conf., pp. 282–286.
  98. A. N. Winchell, H. Winchell, The Microscopical Characters of Artificial Inorganic Substances. New York: Academic, 1964.
  99. J. Warner, D. S. Robertson, H. T. Parfit, “The electro-optic effect of sodium uranyl acetate,” Phvs. Letters, vol. 19-pp. 479–480, December1965.
  100. W. G. Cady, Piezoelectricity. New York: McGraw-Hill, 1946, p. 721.
  101. D. D. Eden, G. H. Thiess, “Measurement of the direct electrooptic effect in quartz at UHF,” Appl. Opt., vol. 2, pp. 868–869, August1963. [CrossRef]
  102. O. G. Blokh, I. S. Zheludev, U. A. Shamburov, “The electrooptic effect in crystals of pentaerythritol C(CH2OH)4,” Soviet Phys.—Cryst., vol. 8, pp. 37–40, July–August 1963.
  103. C. H. Holmes, E. G. Spencer, A. A. Ballman, P. V. Lenzo, “The electrooptic effect in calcium pyroniobate,” Appl. Opt., vol. 4, pp. 551–553, May1965. [CrossRef]
  104. C. F. Buhrer, L. Ho, “Electrooptic effect in and (NH4)2Cd2(SO4)3and (NH4)2Mn2(SO4)3,” Appl. Opt., vol. 3, p. 314, February1964. [CrossRef]
  105. G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Sys. Tech. J., vol. 40, pp. 489–508, March1961; H. Kogelnik, T. Li, “Laser beams and resonators,” this issue.
  106. R. H. Blumenthal, “Design of a microwave-frequency light modulator,” Proc. IEEE, vol. 50, pp. 452–456, April1962.
  107. W. W. Rigrod, I. P. Kaminow, “Wide-band microwave light modulation,” Proc. IEEE, vol. 51, pp. 137–140, January1963. [CrossRef]
  108. I. P. Kaminow, J. Liu, “Propagation characteristics of partially loaded two-conductor transmission line for broadband light modulators,” Proc. IEEE, vol. 51, pp. 132–136, January1963. [CrossRef]
  109. C. J. Peters, “Gigacycle bandwidth coherent light traveling-wave phase modulator,” Proc. IEEE, vol. 51, pp. 147–153, January1963. [CrossRef]
  110. C. J. Peters, “Gigacycle-bandwidth coherent-light traveling-wave amplitude modulator,” Proc. IEEE, vol. 53, pp. 455–460, May1965. [CrossRef]
  111. E. I. Gordon, M. G. Cohen, “Electro-Optic diffraction grating for light beam modulation and diffraction,” IEEE J. of Quantum Electronics, vol. QE-1, pp. 191–198, August1965. [CrossRef]
  112. W. J. Tabor, “A high capacity digital light deflector using Wollaston prisms,” Bell Sys. Tech. J., to be published. R. A. Soref, D. H. McMahon, “Optical design of Wollaston-prism digital light deflectors,” Appl. Opt., vol. 5, pp. 425–434, March1966. [CrossRef] [PubMed]
  113. I. P. Kaminow, R. Kompfner, W. H. Louisell, “Improvements in light modulators of the traveling-wave type,” IRE Trans. on Microwave Theory and Techniques, vol. MTT-10, pp. 311–313, September1962. [CrossRef]
  114. J. A. Ernest, I. P. Kaminow, 1963, unpublished.
  115. E. A. Ohm, private communication.
  116. I. P. Kaminow, “Microwave modulation of the electrooptic effect in KH2PO4,” Phys. Rev. Letters, vol. 6, pp. 528–530, May1961.I. P. Kaminow, “Splitting of Fabry-Perot rings by microwave modulation of light,” Appl. Phys. Letters, vol. 2, pp. 41–42, January1963. [CrossRef]
  117. E. I. Gordon, J. D. Rigden, “The Fabry-Perot electro-optic modulator,” Bell Sys. Tech. J., vol. 42, pp. 155–179, January1963.
  118. J. T. Ruscio, “A coherent light modulator,” IEEE J. of Quantum Electronics (Correspondence), vol. QE-1, pp. 182–183, July1965. [CrossRef]
  119. S. M. Stone, “A microwave electro-optic modulator which overcomes transit time limitation,” Proc. IEEE (Correspondence), vol. 52, pp. 409–410, April1964. [CrossRef]
  120. R. A. Myers, P. S. Pershan, “Light modulation experiments at 16 Gc/sec,” J. Appl. Phys., vol. 36, pp. 22–28, January1965. [CrossRef]
  121. M. DiDomenico, L. K. Anderson, “Broadband electrooptic traveling-wave light modulators,” Bell Sys. Tech. J., vol. 42, pp. 2621–2678, November1963.
  122. A. Ashkin, M. Gershenzon, “Reflection and guiding of light at p-njunction,” J. Appl. Phys., vol. 34, pp. 2116–2119, July1963. [CrossRef]
  123. D. F. Nelson, F. K. Reinhart, “Light modulation by the electrooptic effect in reverse-biased GaP p-njunctions,” Appl. Phys. Letters, vol. 5, pp. 148–150, October1964. [CrossRef]
  124. W. L. Walters, “Electrooptic effect in reverse-biased GaAs p-njunctions,” J. Appl. Phys., vol. 37, p. 916, February1966. [CrossRef]
  125. F. K. Reinhart, private communication.
  126. I. P. Kaminow, unpublished. Measurements at 9.2 GHz indicate ∊=2.6 ± 0.2, with no observable trend between −200 and +100°C, and tan δ<0.005.
  127. R. T. Denton, T. S. Kinsel, F. S. Chen, “224 Mc/s Optical Pulse Code Modulator,” Proc. IEEE, to be published; I. P. Kaminow, “Lithium niobate light modulator at 4 GHz (abstract),” J. Opt. Soc. Am., vol. 55, November1966, to be published.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited