OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 1 — Jan. 1, 2011
  • pp: 53–60

Active suppression of air refractive index fluctuation using a Fabry–Perot cavity and a piezoelectric volume actuator

Tuan Quoc Banh, Yuria Ohkubo, Yoshinosuke Murai, and Masato Aketagawa  »View Author Affiliations


Applied Optics, Vol. 50, Issue 1, pp. 53-60 (2011)
http://dx.doi.org/10.1364/AO.50.000053


View Full Text Article

Enhanced HTML    Acrobat PDF (1019 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Air refractive index fluctuation ( Δ n air ) is one of the largest uncertainty sources in precision interferometry systems that require a resolution of nanometer order or less. We introduce a method for the active suppression of Δ n air inside a normal air-environment chamber using a Fabry–Perot cavity and a piezoelectric volume actuator. The temporal air refractive index ( n air ) at a local point is maintained constant with an expanded uncertainty of 4.2 × 10 9 ( k = 2 ), a sufficiently low uncertainty for precise measurements unaffected by Δ n air to be made inside a chamber.

© 2010 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5060) Instrumentation, measurement, and metrology : Phase modulation

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 29, 2010
Revised Manuscript: October 13, 2010
Manuscript Accepted: November 16, 2010
Published: December 23, 2010

Citation
Tuan Quoc Banh, Yuria Ohkubo, Yoshinosuke Murai, and Masato Aketagawa, "Active suppression of air refractive index fluctuation using a Fabry–Perot cavity and a piezoelectric volume actuator," Appl. Opt. 50, 53-60 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-1-53


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. “International Technology Roadmap for Semiconductors,” http://public.itrs.net/.
  2. “A roadmap for the development of United States astronomical adaptive optics,” http://www.noao.edu/system/aodp/AO_Roadmap2008_Final.pdf.
  3. T. Suzuki, O. Sasaki, K. Higuchi, and T. Maruyama, “Real time displacement measurement in sinusoidal phase modulating interferometry,” Appl. Opt. 28, 5270–5274 (1989). [CrossRef] [PubMed]
  4. C. C. Hsu, C. C. Wu, J. Y. Lee, H. Y. Chen, and H. F. Weng, “Reflection type heterodyne grating interferometry for in-plane displacement measurement,” Opt. Commun. 281, 2582–2589 (2008). [CrossRef]
  5. D. Karabacak, T. Kouh, and K. L. Ekinci, “Analysis of optical interferometric displacement detection in nanoelectromechanical systems,” J. Appl. Phys. 98, 124309–124318 (2005). [CrossRef]
  6. O. Cip, F. Petru, Z. Buchta, and J. Lazar, “Small displacement measurements with subatomic resolution by beat frequency measurements,” Meas. Sci. Technol. 18, 2005–2013 (2007). [CrossRef]
  7. V. P. Koronkevitch, G. A. Lenkova, A. M. Tsherbatchenko, A. I. Lokhmatov, V. P. Kiryanov, B. G. Matienko, and V. P. Golubkova, “Laser interferometers for measuring displacements and determining object positions,” Appl. Opt. 11, 359–361 (1972). [CrossRef] [PubMed]
  8. T. E. Carlsson, J. Gustafsson, and N. H. Abramson, “Method for fringe enhancement in holographic interferometry for measurement of in-plane displacements,” Appl. Opt. 37, 1845–1847 (1998). [CrossRef]
  9. S. Hosoe, “Laser interferometric system for displacement measurement with high precision,” Nanotechnology 2, 88–92(1991). [CrossRef]
  10. O. Sasaki and K. Takahashi, “Sinusoidal phase modulating interferometer using optical fibers for displacement measurement,” Appl. Opt. 27, 4139–4142 (1988). [CrossRef] [PubMed]
  11. For example, Agilent Technologies, 5301 Stevens Creek Boulevard, Santa Clara, California 95051, USA.
  12. For example, Ranishaw Plc. Old Town, Wotton-under-Edge, Gloucestershire, GL12 7DW, UK.
  13. N. Khelifa, H. Fang, J. Xu, P. Juncar, and M. Himbert, “Refractometer for tracking changes in the refractive index of air near 780nm,” Appl. Opt. 37, 156–161 (1998). [CrossRef]
  14. B. Edlen, “The dispersion of standard air,” J. Opt. Soc. Am. 43, 339–344 (1953). [CrossRef]
  15. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566–1573(1996). [CrossRef] [PubMed]
  16. M. L. Eickhoff and J. L. Hall, “Real-time precision refractometry: new approaches,” Appl. Opt. 36, 1223–1234 (1997). [CrossRef] [PubMed]
  17. T. R. Schibli, K. Minoshima, Y. Bitou, F. L. Hong, H. Inaba, A. Onae, and H. Matsumoto, “Displacement metrology with sub-pm resolution in air based on a fs-comb wavelength synthesizer,” Opt. Express 14, 5984–5993 (2006). [CrossRef] [PubMed]
  18. K. P. Birch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30, 155–162(1993). [CrossRef]
  19. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  20. T. Q. Banh, M. Ishige, Y. Ohkubo, and M. Aketagawa, “Measurement of air refractive index fluctuation from laser frequency shift with uncertainty of order 10−9,” Meas. Sci. Technol. 20, 125302–125309 (2009). [CrossRef]
  21. M. Aketagawa, K. Takada, K. Kobayashi, N. Takeshima, M. Noro, and Y. Nakayama, “Length measurement using a regular crystalline lattice and a dual tunneling unit scanning tunneling microscope in a thermo-stabilized cell,” Meas. Sci. Technol. 9, 1076–1081 (1998). [CrossRef]
  22. Agilent 10717A Wavelength Tracker, Agilent technologies 5301 Stevens Creek, Santa Clara, California. 95051, USA.
  23. J. B. Bryan, “Design and construction of an ultraprecision 84 inch diamond turning machine,” Precis. Eng. 1, 13–17 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited