OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 1 — Jan. 1, 2011
  • pp: 61–65

Time-dependent photon number discrimination of InGaAs/InP avalanche photodiode single-photon detector

Yi Jian, E Wu, Xiuliang Chen, Guang Wu, and Heping Zeng  »View Author Affiliations


Applied Optics, Vol. 50, Issue 1, pp. 61-65 (2011)
http://dx.doi.org/10.1364/AO.50.000061


View Full Text Article

Enhanced HTML    Acrobat PDF (651 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated the photon-number-resolving (PNR) performance of the InGaAs/InP avalanche photodiode (APD) as a function of the electric gate width and the photon arrival time. The optimal electric gate width was around 1 ns for PNR measurements in our experiment, which provided a PNR capability up to three photons per pulse when the detection efficiency was 20 % . And the dependence of the PNR performance on the arrival time of the photons showed that the photon number could be better resolved if the photons arrived on the rising edge of the electric gate than on the falling edge. In addition, we found that with the increase of the electric gate width, PNR performance got worse. The observation would be helpful for improving the PNR performance of the InGaAs/InP APD in the gated mode.

© 2010 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Detectors

History
Original Manuscript: July 30, 2010
Revised Manuscript: November 1, 2010
Manuscript Accepted: November 18, 2010
Published: December 23, 2010

Citation
Yi Jian, E Wu, Xiuliang Chen, Guang Wu, and Heping Zeng, "Time-dependent photon number discrimination of InGaAs/InP avalanche photodiode single-photon detector," Appl. Opt. 50, 61-65 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-1-61


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Takeuchi, J. Kim, Y. Yamamoto, and H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett. 74, 1063–1065 (1999). [CrossRef]
  2. A. Miller, S. Nam, J. Martinis, and A. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83, 791–793(2003). [CrossRef]
  3. D. Achilles, D. Silberhorn, C. Sliwa, K. Banaszek, and I. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. 28, 2387–2390 (2003). [CrossRef] [PubMed]
  4. D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret, S. Girvin, and R. Schoelkopf, “Resolving photon number states in a superconducting circuit,” Nature 445, 515–518 (2007). [CrossRef] [PubMed]
  5. A. Lita, A. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040(2008). [CrossRef] [PubMed]
  6. F. Marsili, D. Bitauld, A. Gaggero, S. Jahamirinejad, R. Leoni, F. Marrioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009). [CrossRef]
  7. P. Kok, W. Munro, K. Nemoto, T. Ralph, J. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]
  8. E. Waks, E. Diamanti, B. Sanders, S. Bartlett, and Y. Yamamoto, “Direct observation of nonclassical photon statistics in parametric down-conversion,” Phys. Rev. Lett. 92, 113602 (2004). [CrossRef] [PubMed]
  9. P. Ambrico, A. Amodeo, P. Girolamo, and N. Spinelli, “Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region,” Appl. Opt. 39, 6847–6865 (2000). [CrossRef]
  10. A. Berglund, A. Doherty, and H. Mabuchi, “Photon statistics and dynamics of fluorescence resonance energy transfer,” Phys. Rev. Lett. 89, 068101 (2002). [CrossRef] [PubMed]
  11. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Gated-mode single-photon detection at 1550nm by discharge pulse counting,” Appl. Phys. Lett. 84, 3606–3608 (2004). [CrossRef]
  12. G. Wu, C. Zhou, X. Chen, and H. Zeng, “High performance of gated-mode single-photon detector at 1.55μm,” Opt. Commun. 265, 126–131 (2006). [CrossRef]
  13. P. Zhou, Z. Wei, C. Liao, C. Li, and S. Yuan, “A rigorous theoretical analysis for an In0.53Ga0.47As/InP single photon avalanche photodiode under Geiger mode operation,” J. Phys. D: Appl. Phys. 41, 155101 (2008). [CrossRef]
  14. Z. Yuan, B. Kardynal, A. Sharpe, and A. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007). [CrossRef]
  15. B. Kardynal, Z. Yuan, and A. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photon. 2, 425–428 (2008). [CrossRef]
  16. L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94, 161106 (2009). [CrossRef]
  17. X. Chen, E. Wu, L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118(2009). [CrossRef]
  18. G. Wu, Y. Jian, E. Wu, and H. Zeng, “Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode,” Opt. Express 17, 18782–18787 (2009). [CrossRef]
  19. Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96, 191107 (2010). [CrossRef]
  20. M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5μm photon counting applications,” J. Mod. Opt. 54, 283–304 (2007). [CrossRef]
  21. O. Thomas, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Efficient photon number detection with silicon avalanche photodiodes,” Appl. Phys. Lett. 97, 031102 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited