OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 1 — Jan. 1, 2011
  • pp: 82–89

Open-loop control of liquid-crystal spatial light modulators for vertical atmospheric turbulence wavefront correction

Chao Liu, Lifa Hu, Quanquan Mu, Zhaoliang Cao, and Li Xuan  »View Author Affiliations

Applied Optics, Vol. 50, Issue 1, pp. 82-89 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (914 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an open-loop adaptive optics (AO) system based on two liquid-crystal spatial light modulators (LCSLMs) that profit from high precision wavefront generation and good repeatability. A wide optical bandwidth of 300 nm is designed for the system, and a new open-loop optical layout is invented to conveniently switch between the open and closed loop. The corresponding control algorithm is introduced with a loop frequency (the reciprocal of the total time delay of a correction loop) of 103 Hz . The system was mounted onto a 2.16 m telescope for vertical atmospheric turbulence correction. The full width at half-maximum of the image of the star α Boo reached 0.636 arc sec after the open-loop correction, while it was 2.12 arc sec before the correction. The result indicates that the open-loop AO system based on LCSLMs potentially has the ability to be used for general astronomical applications.

© 2010 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: August 11, 2010
Revised Manuscript: November 10, 2010
Manuscript Accepted: November 10, 2010
Published: December 27, 2010

Chao Liu, Lifa Hu, Quanquan Mu, Zhaoliang Cao, and Li Xuan, "Open-loop control of liquid-crystal spatial light modulators for vertical atmospheric turbulence wavefront correction," Appl. Opt. 50, 82-89 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Kern, P. Lena, P. Gigan, F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, C. Boyer, P. Jagourel, and F. Merkle, “Adaptive optics prototype system for infrared astronomy. 1. system description,” Proc. SPIE 1271, 243–251 (1990). [CrossRef]
  2. H. Takami, N. Takato, M. Otsubo, T. Kanzawa, Y. Kamata, K. Nakashima, and M. Iye, “Adaptive optics system for Cassegrain focus of Subaru 8.2m telescope,” Proc. SPIE 3353, 500–507 (1998). [CrossRef]
  3. W. H. Jiang, G. M. Tang, M. Q. Li, N. Ling, C. H. Rao, C. L. Guan, L. T. Jiang, F. Shen, M. Li, Y. Y. Li, and D. H. Chen, “21-element infrared adaptive optics system at 2.16m telescope,” Proc. SPIE 3762, 142–149 (1999). [CrossRef]
  4. A. Iriarte, S. Cuevas, J. E. Graves, and M. Northcott, “Adaptive secondary for the 2.1m Telescope at SPM Observatory,” Proc. SPIE 4007, 537–546 (2000). [CrossRef]
  5. A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron. 32, 902–908 (2002). [CrossRef]
  6. M. A. van Dam, D. Le Mignant, and B. A. Macintosh, “Performance of the Keck Observatory adaptive-optics system,” Appl. Opt. 43, 5458–5467 (2004). [CrossRef] [PubMed]
  7. M. Vorontsov, J. Riker, G. Carhart, V. S. Gudimetla, L. Beresnev, T. Weyrauch, and L. C. Roberts, Jr., “Deep turbulence effects compensation experiments with a cascaded adaptive optics system using a 3.63m telescope,” Appl. Opt. 48, A47–57 (2009). [CrossRef]
  8. K. Morzinski, K. Harpse, D. Gavel, and S. Ammons, “The open-loop control of MEMS: modeling and experimental results,” Proc. SPIE 6467, 64670G (2007). [CrossRef]
  9. D. T. Gavel, “Adaptive optics control strategies for extremely large telescopes,” Proc. SPIE 4494, 215–220 (2002). [CrossRef]
  10. C. Vogel and Q. Yang, “Modeling, simulation, and open-loop control of a continuous facesheet MEMS deformable mirror,” J. Opt. Soc. Am. A 23, 1074–1081 (2006). [CrossRef]
  11. J. Stewart, A. Diouf, Y. Zhou, and T. Bifano, “Open-loop control of a MEMS deformable mirror for large-amplitude wavefront control,” J. Opt. Soc. Am. A 24, 3827–3833 (2007). [CrossRef]
  12. G. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1520 (1997). [CrossRef] [PubMed]
  13. M. A. Neil, M. J. Booth, and T. Wilson, “Closed-loop aberration correction by use of a modal Zernike wave-front sensor,” Opt. Lett. 25, 1083–1085 (2000). [CrossRef]
  14. D. Dayton, S. Browne, J. Gonglewski, and S. Restaino, “Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction,” Appl. Opt. 40, 2345–2355 (2001). [CrossRef]
  15. S. R. Restaino, D. M. Payne, J. T. Baker, J. R. Andrews, S. W. Teare, G. C. Gilbreath, D. Dayton, and J. Gonglewski, “Liquid crystal technology for adaptive optics: an update,” Proc. SPIE 5003, 187–192 (2003). [CrossRef]
  16. N. Collings, W. Crossland, P. Ayliffe, D. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747(1989). [CrossRef] [PubMed]
  17. D. Dayton, J. Gonglewski, S. Restaino, J. Martin, J. Phillips, M. Hartman, P. Kervin, J. Snodgress, S. Browne, and N. Heimann, “Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites,” Opt. Express 10, 1508–1519 (2002). [PubMed]
  18. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, “Phase-only liquid crystal spatial light modulator for wavefront correction with high precision,” Opt. Express 12, 6403–6409 (2004). [CrossRef] [PubMed]
  19. C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17, 10774–10781 (2009). [CrossRef] [PubMed]
  20. P. Prieto, E. Fernandez, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004). [CrossRef] [PubMed]
  21. J. Schmidt, M. Goda, and B. Duncan, “Aberration production using a high-resolution liquid-crystal spatial light modulator,” Appl. Opt. 46, 2423–2433 (2007). [CrossRef] [PubMed]
  22. G. Love, “Liquid-crystal phase modulator for unpolarized light,” Appl. Opt. 32, 2222–2223 (1993). [CrossRef] [PubMed]
  23. T. L. Kelly and G. D. Love, “White-light performance of a polarization-independent liquid-crystal phase modulator,” Appl. Opt. 38, 1986–1989 (1999). [CrossRef]
  24. L. Hu, X. Li, Q. Mu, Z. Cao, D. Li, Y. Liu, Z. Peng, and X. Lu, “A polarization independent liquid crystal adaptive optics system,” J. Opt. 12, 045501 (2010). [CrossRef]
  25. D. Cai, J. Yao, and W. Jiang, “Liquid crystal adaptive optics system for unpolarized light,” Proc. SPIE 7209, 72090P(2009). [CrossRef]
  26. Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, “Open-loop correction of horizontal turbulence: system design and result,” Appl. Opt. 47, 4297–4301 (2008). [CrossRef] [PubMed]
  27. R. Dou and M. Giles, “Closed-loop adaptive-optics system with a liquid-crystal television as a phase retarder,” Opt. Lett. 20, 1583–1585 (1995). [CrossRef] [PubMed]
  28. J. Gourlay, G. Love, P. Birch, R. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997). [CrossRef]
  29. S. Restaino, D. Dayton, S. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, and M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Express 6, 2–6 (2000). [CrossRef] [PubMed]
  30. M. K. Giles, A. J. Seward, and T. M. Giles, “Closed-loop phase-contrast adaptive optics system using liquid crystal phase modulators: experimental results,” Proc. SPIE 4493, 174–183(2002). [CrossRef]
  31. Z. Cao, Q. Mu, L. Hu, D. Li, Y. Liu, L. Jin, and L. Xuan, “Correction of horizontal turbulence with nematic liquid crystal wavefront corrector,” Opt. Express 16, 7006–7013 (2008). [CrossRef] [PubMed]
  32. Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, “Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope,” Opt. Express 17, 2530–2537(2009). [CrossRef] [PubMed]
  33. M. Gruneisen, R. Dymale, J. Rotgé, L. DeSandre, and D. Lubin, “Wavelength-dependent characteristics of a telescope system with diffractive wavefront compensation,” Opt. Eng. 44, 068002 (2005). [CrossRef]
  34. M. Gruneisen, R. Dymale, and M. Garvin, “Wavelength-dependent characteristics of modulo Nλ0 optical wavefront control,” Appl. Opt. 45, 4075–4083 (2006). [CrossRef] [PubMed]
  35. C. Boyer, V. Michau, and G. Rousset, “Adaptive optics: interaction matrix measurements and real time control algorithms for the Come-On project,” Proc. SPIE 1542, 46–61(1991). [CrossRef]
  36. D. Miller, L. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275–289 (2005). [CrossRef] [PubMed]
  37. L. Thibos, R. Applegate, J. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).
  38. Z. Cao, Q. Mu, L. Hu, Y. Liu, and L. Xuan, “Improve the loop frequency of liquid crystal adaptive optics by concurrent control technique,” Opt. Commun. 283, 946–950(2010). [CrossRef]
  39. M. Sarazin and F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).
  40. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3898 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited