OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 1 — Jan. 1, 2011
  • pp: 90–94

Tunable high-power narrow-spectrum external-cavity diode laser at 675 nm as a pump source for UV generation

Mingjun Chi, Ole Bjarlin Jensen, Götz Erbert, Bernd Sumpf, and Paul Michael Petersen  »View Author Affiliations


Applied Optics, Vol. 50, Issue 1, pp. 90-94 (2011)
http://dx.doi.org/10.1364/AO.50.000090


View Full Text Article

Enhanced HTML    Acrobat PDF (520 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-power narrow-spectrum diode laser systems based on tapered gain media in an external cavity are demonstrated at 675 nm . Two 2 mm long amplifiers are used, one with a 500 μm long ridge-waveguide section (device A), the other with a 750 μm long ridge-waveguide section (device B). Laser system A based on device A is tunable from 663 to 684 nm with output power higher than 0.55 W in the tuning range; as high as 1.25 W output power is obtained at 675.34 nm . The emission spectral bandwidth is less than 0.05 nm throughout the tuning range, and the beam quality factor M 2 is 2.07 at an output power of 1.0 W . Laser system B based on device B is tunable from 666 to 685 nm . As high as 1.05 W output power is obtained around 675.67 nm . The emission spectral bandwidth is less than 0.07 nm throughout the tuning range, and the beam quality factor M 2 is 1.13 at an output power of 0.93 W . Laser system B is used as a pump source for the generation of 337.6 nm UV light by single-pass frequency doubling in a bismuth triborate (BIBO) crystal. An output power of 109 μW UV light, corresponding to a conversion efficiency of 0.026 % W 1 , is attained.

© 2011 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3280) Lasers and laser optics : Laser amplifiers
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 20, 2010
Revised Manuscript: November 22, 2010
Manuscript Accepted: November 22, 2010
Published: December 27, 2010

Citation
Mingjun Chi, Ole Bjarlin Jensen, Götz Erbert, Bernd Sumpf, and Paul Michael Petersen, "Tunable high-power narrow-spectrum external-cavity diode laser at 675 nm as a pump source for UV generation," Appl. Opt. 50, 90-94 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-1-90


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. S. Kintzer, J. N. Walpole, S. R. Chinn, C. A. Wang, and L. J. Missaggia, “High-power, strained-layer amplifiers and lasers with tapered gain regions,” IEEE Photonics Technol. Lett. 5, 605–608 (1993). [CrossRef]
  2. B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 1009–1020 (2009). [CrossRef]
  3. S. O’Brien, D. F. Welch, R. Parke, D. Mehuys, K. Dzurko, R. Lang, R. Waarts, and D. Scifres, “Operating characteristics of a high-power monolithically integrated flared amplifier master oscillator power amplifier,” IEEE J. Quantum Electron. 29, 2052–2057 (1993). [CrossRef]
  4. S. O’Brien, R. Lang, R. Parke, J. Major, D. F. Welch, and D. Mehuys, “2.2 W continuous-wave diffraction-limited monolithically integrated master oscillator power amplifier at 854 nm,” IEEE Photonics Technol. Lett. 9, 440–442 (1997). [CrossRef]
  5. S. O’Brien, A. Schoenfelder, and R. J. Lang, “5 W CW diffraction-limited InGaAs broad-area flared amplifier at 970 nm,” IEEE Photonics Technol. Lett. 9, 1217–1219 (1997). [CrossRef]
  6. G. Ferrari, M. Mewes, F. Schreck, and C. Salomon, “High-power multiple-frequency narrow-linewidth laser source based on a semiconductor tapered amplifier,” Opt. Lett. 24, 151–153 (1999). [CrossRef]
  7. S. Morgott, P. Chazan, M. Mikulla, M. Walther, R. Kiefer, J. Braunstein, and G. Weimann, “High-power near-diffraction-limited external cavity laser, tunable from 1030 to 1085 nm,” Electron. Lett. 34, 558–559 (1998). [CrossRef]
  8. A. K. Goyal, P. Gavrilovic, and H. Po, “1.35 W of stable single-frequency emission from an external cavity tapered oscillator utilizing fiber Bragg grating feedback,” Appl. Phys. Lett. 73, 575–577 (1998). [CrossRef]
  9. C. Pedersen and R. S. Hansen, “Single frequency, high-power, tapered diode laser using phase-conjugated feedback,” Opt. Express 13, 3961–3968 (2005). [CrossRef] [PubMed]
  10. M. Chi, O. B. Jensen, J. Holm, C. Pedersen, P. E. Andersen, G. Erbert, B. Sumpf, and P. M. Petersen, “Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier,” Opt. Express 13, 10589–10596 (2005). [CrossRef] [PubMed]
  11. T. Q. Tien, M. Maiwald, B. Sumpf, G. Erbert, and G. Tränkle, “Microexternal cavity tapered lasers at 670 nm with 5 W peak power and nearly diffraction-limited beam quality,” Opt. Lett. 33, 2692–2694 (2008). [CrossRef] [PubMed]
  12. K. Sakai, S. Itakura, N. Shimada, K. Shibata, Y. Hanamaki, T. Yagi, and Y. Hirano, “High-power tapered unstable-resonator laser diode with a fiber-Bragg grating reflector,” IEEE Photonics Technol. Lett. 21, 1103–1105 (2009). [CrossRef]
  13. B. Sumpf, G. Erbert, J. Fricke, P. Froese, R. Häring, W. G. Kaenders, A. Klehr, F. Lison, P. Ressel, H. Wenzel, M. Weyers, M. Zorn, and G. Tränkle, “670 nm tapered lasers and amplifiers with output powers P≥1 W and nearly diffraction limited beam quality,” Proc. SPIE 6485, 648517 (2007). [CrossRef]
  14. R. Häring, B. Sumpf, G. Erbert, G. Tränkle, F. Lison, and W. G. Kaenders, “670 nm semiconductor lasers for Lithium spectroscopy with 1 W,” Proc. SPIE 6485, 648516 (2007). [CrossRef]
  15. M. Chi, G. Erbert, B. Sumpf, and P. M. Petersen, “Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm,” Opt. Lett. 35, 1545–1547 (2010). [CrossRef] [PubMed]
  16. H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342 nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photon. 2, 551–554 (2008). [CrossRef]
  17. H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode,” Appl. Phys. Lett. 93, 241106 (2008). [CrossRef]
  18. K. Mizuuchi and K. Yamamoto, “Generation of 340 nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3,” Opt. Lett. 21, 107–109 (1996). [CrossRef] [PubMed]
  19. K. Mizuuchi, K. Yamamoto, and M. Kato, “Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO3,” Appl. Phys. Lett. 70, 1201–1203 (1997). [CrossRef]
  20. R. Knappe, C. K. Laue, and R. Wallenstein, “Tunable UV-source based on frequency-doubled red diode laser oscillator-amplifier system,” Electron. Lett. 34, 1233–1234 (1998). [CrossRef]
  21. K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340 nm light in a 1.4 μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90–L91 (2003). [CrossRef]
  22. K. Mizuuchi, T. Sugita, K. Yamamoto, T. Kawaguchi, T. Yoshino, and M. Imaeda, “Efficient 340 nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3,” Opt. Lett. 28, 1344–1346 (2003). [CrossRef] [PubMed]
  23. A. Steinbach, M. Rauner, F. C. Cruz, and J. C. Bergquist, “CW second harmonic generation with elliptical Gaussian beams,” Opt. Commun. 123, 207–214 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited