OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 10 — Apr. 1, 2011
  • pp: 1307–1311

Optical bistability in metal–insulator–metal plasmonic Bragg waveguides with Kerr nonlinear defects

Hua Lu, Xueming Liu, Yongkang Gong, Dong Mao, and Leiran Wang  »View Author Affiliations

Applied Optics, Vol. 50, Issue 10, pp. 1307-1311 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (676 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically investigate the characteristics of the defect mode and the nonlinear effect of optical bistability in metal–insulator–metal (MIM) plasmonic Bragg grating waveguides with Kerr nonlinear defects. By means of finite-difference time-domain simulations, we find that the defect mode peak exhibits a blueshift and height-rise by enlarging the width of the defect layer, and it has a redshift and height-fall with the increase of the dielectric constant of defect layer. Obvious optical bistability is obtained in our waveguides with a length of less than 2 μm . The results show that our structure could be applied to the design of all-optical switching in highly integrated optical circuits.

© 2011 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Nonlinear Optics

Original Manuscript: August 30, 2010
Revised Manuscript: December 8, 2010
Manuscript Accepted: December 8, 2010
Published: March 24, 2011

Hua Lu, Xueming Liu, Yongkang Gong, Dong Mao, and Leiran Wang, "Optical bistability in metal–insulator–metal plasmonic Bragg waveguides with Kerr nonlinear defects," Appl. Opt. 50, 1307-1311 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  2. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005). [CrossRef] [PubMed]
  3. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7549–7554 (2009). [CrossRef]
  4. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004). [CrossRef] [PubMed]
  5. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  6. T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652–9659 (2005). [CrossRef] [PubMed]
  7. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004). [CrossRef]
  8. K. Donghyun, “Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors,” Appl. Opt. 44, 3218–3223 (2005). [CrossRef]
  9. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009). [CrossRef] [PubMed]
  10. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008). [CrossRef] [PubMed]
  11. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam focusing by metallic nano-slit array containing nonlinear material,” Appl. Phys. B 90, 97–99 (2008). [CrossRef]
  12. C. J. Min, P. Wang, C. C. Chen, Y. Deng, Y. H. Lu, H. Ming, T. Y. Ning, Y. L. Zhou, and G. Z. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33, 869–871 (2008). [CrossRef] [PubMed]
  13. G. Tremblay and Y. L. Sheng, “Improving imaging performance of a metallic superlens using the long-range surface plasmon polariton mode cutoff technique,” Appl. Opt. 49, A36–A41 (2010). [CrossRef] [PubMed]
  14. J. W. Mu and W. P. Huang, “A low-loss surface plasmonic bragg grating,” J. Lightwave Technol. 27, 436–439 (2009). [CrossRef]
  15. Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007). [CrossRef]
  16. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005) [CrossRef]
  17. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16, 4888–4894 (2008). [CrossRef] [PubMed]
  18. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323(2006). [CrossRef]
  19. P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2002). [CrossRef]
  20. C. Min, P. Wang, X. J. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express 15, 12368–12373 (2007). [CrossRef] [PubMed]
  21. Y. Shen and G. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16, 8421–8426 (2008). [CrossRef] [PubMed]
  22. M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, “A simple and rigorous verification technique for nonlinear FDTD algorithms by optical parametric four-wave mixing,” Microwave Opt. Technol. Lett. 48, 88–91 (2005). [CrossRef]
  23. J. Park, H. Kim, I. Lee, S. Kim, J. Jung, and B. Lee, “Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity,” Opt. Express 16, 16903–16915 (2008). [CrossRef] [PubMed]
  24. G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009). [CrossRef]
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).
  26. M. Okuda and K. Onaka, “Bistability of optical resonator with distributed Bragg-Reflectors by using the Kerr effect,” Jpn. J. Appl. Phys. 16, 769–773 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited