OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 10 — Apr. 1, 2011
  • pp: 1364–1373

Diffraction efficiency of 200-nm-period critical-angle transmission gratings in the soft x-ray and extreme ultraviolet wavelength bands

Ralf K. Heilmann, Minseung Ahn, Alex Bruccoleri, Chih-Hao Chang, Eric M. Gullikson, Pran Mukherjee, and Mark L. Schattenburg  »View Author Affiliations


Applied Optics, Vol. 50, Issue 10, pp. 1364-1373 (2011)
http://dx.doi.org/10.1364/AO.50.001364


View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on measurements of the diffraction efficiency of 200 - nm -period freestanding blazed transmission gratings for wavelengths in the 0.96 to 19.4 nm range. These critical-angle transmission (CAT) gratings achieve highly efficient blazing over a broad band via total external reflection off the sidewalls of smooth, tens of nanometer thin ultrahigh aspect-ratio silicon grating bars and thus combine the advantages of blazed x-ray reflection gratings with those of more conventional x-ray transmission gratings. Prototype gratings with maximum depths of 3.2 and 6 μm were investigated at two different blaze angles. In these initial CAT gratings the grating bars are monolithically connected to a cross support mesh that only leaves less than half of the grating area unobstructed. Because of our initial fabrication approach, the support mesh bars feature a strongly trapezoidal cross section that leads to varying CAT grating depths and partial absorption of diffracted orders. While theory predicts broadband absolute diffraction efficiencies as high as 60% for ideal CAT gratings without a support mesh, experimental results show efficiencies in the range of 50 100 % of theoretical predictions when taking the effects of the support mesh into account. Future minimization of the support mesh therefore promises broadband CAT grating absolute diffraction efficiencies of 50% or higher.

© 2011 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(300.6560) Spectroscopy : Spectroscopy, x-ray
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)
(350.1260) Other areas of optics : Astronomical optics
(260.6048) Physical optics : Soft x-rays

ToC Category:
Diffraction and Gratings

History
Original Manuscript: December 22, 2010
Manuscript Accepted: January 18, 2011
Published: March 25, 2011

Citation
Ralf K. Heilmann, Minseung Ahn, Alex Bruccoleri, Chih-Hao Chang, Eric M. Gullikson, Pran Mukherjee, and Mark L. Schattenburg, "Diffraction efficiency of 200-nm-period critical-angle transmission gratings in the soft x-ray and extreme ultraviolet wavelength bands," Appl. Opt. 50, 1364-1373 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-10-1364


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Lord Rayleigh, “On the manufacture and theory of diffraction gratings,” Philos. Mag. , Series 4, 47, 193–205 (1874).
  2. R. Wood, “The echelette grating for the infra-red,” Philos. Mag. , Series 6, 20, 770–778 (1910).
  3. C.-H. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, M. L. Schattenburg, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, “Fabrication of saw-tooth diffraction gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2755–2759 (2003). [CrossRef]
  4. C.-H. Chang, J. C. Montoya, M. Akilian, A. Lapsa, R. K. Heilmann, M. L. Schattenburg, M. Li, K. A. Flanagan, A. P. Rasmussen, J. F. Seely, J. M. Laming, B. Kjornrattanawanich, and L. I. Goray, “High fidelity blazed grating replication using nanoimprint lithography,” J. Vac. Sci. Technol. B 22, 3260–3264 (2004). [CrossRef]
  5. A. Rasmussen, A. Aquila, J. Bookbinder, C.-H. Chang, E. Gullikson, R. K. Heilmann, S. M. Kahn, F. Paerels, and M. L. Schattenburg, “Grating arrays for high-throughput soft x-ray spectrometers,” Proc. SPIE 5168, 248 (2004). [CrossRef]
  6. J. F. Seely, L. I. Goray, B. Kjornrattanawanich, J. M. Laming, G. E. Holland, K. A. Flanagan, R. K. Heilmann, C.-H. Chang, M. L. Schattenburg, and A. P. Rasmussen, “Efficiency of a grazing-incidence off-plane grating in the soft-x-ray region,” Appl. Opt. 45, 1680–1687 (2006). [CrossRef] [PubMed]
  7. D. L. Voronov, M. Ahn, E. H. Anderson, R. Cambie, C.-H. Chang, E. M. Gullikson, R. K. Heilmann, F. Salmassi, M. L. Schattenburg, T. Warwick, V. V. Yashchuk, L. Zipp, and H. A. Padmore, “High efficiency 5000 lines/mm multilayer-coated blazed grating for extreme ultraviolet wavelengths,” Opt. Lett. 35, 2615–2617 (2010). [CrossRef] [PubMed]
  8. C. R. Canizares, J. E. Davis, D. Dewey, K. A. Flanagan, E. B. Galton, D. P. Huenemoerder, K. Ishibashi, T. H. Markert, H. L. Marshall, M. McGuirk, M. L. Schattenburg, N. S. Schulz, H. I. Smith, and M. Wise, “The Chandra high-energy transmission grating: design, fabrication, ground calibration, and 5 years in flight,” Publ. Astron. Soc. Pac. 117, 1144–1171(2005). [CrossRef]
  9. R. K. Heilmann, M. Ahn, E. M. Gullikson, and M. L. Schattenburg, “Blazed high-efficiency x-ray diffraction via transmission through arrays of nanometer-scale mirrors,” Opt. Express 16, 8658–8669 (2008). [CrossRef] [PubMed]
  10. See for example http://ixo.gsfc.nasa.gov/.
  11. K. Flanagan, M. Ahn, J. Davis, R. K. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. L. Schattenburg, N. Schulz, and Y. Zhao, “Spectrometer concept and design for x-ray astronomy using a blazed transmission grating,” Proc. SPIE 6688, 66880Y(2007). [CrossRef]
  12. R. K. Heilmann, M. Ahn, and M. L. Schattenburg, “Fabrication and performance of blazed transmission gratings for x-ray astronomy,” Proc. SPIE 7011, 701106 (2008). [CrossRef]
  13. R. K. Heilmann, M. Ahn, M. W. Bautz, R. Foster, D. P. Huenemoerder, H. L. Marshall, P. Mukherjee, M. L. Schattenburg, N. S. Schulz, and M. Smith, “Development of a critical-angle transmission grating spectrometer for the International X-Ray Observatory,” Proc. SPIE 7437, 74370G(2009). [CrossRef]
  14. R. K. Heilmann, J. E. Davis, D. Dewey, M. W. Bautz, R. Foster, A. Bruccoleri, P. Mukherjee, D. Robinson, D. P. Huenemoerder, H. L. Marshall, M. L. Schattenburg, N. S. Schulz, L. J. Guo, A. F. Kaplan, and R. B. Schweikart, “Critical-angle transmission grating spectrometer for high-resolution soft x-ray spectroscopy on the International X-Ray Observatory,” Proc. SPIE 7732, 77321J (2010). [CrossRef]
  15. M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of 200 nm-period blazed transmission gratings on silicon-on-insulator wafers,” J. Vac. Sci. Technol. B 26, 2179–2182(2008). [CrossRef]
  16. M. Ahn, “Fabrication of critical-angle transmission gratings for high efficiency x-ray spectroscopy,” Ph.D. thesis (Department of Mechanical Engineering, Massachusetts Institute of Technology, 2009).
  17. R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, “Dimensional metrology for nanometer-scale science and engineering: towards sub-nanometer accurate encoders,” Nanotechnology 15, S504–S511 (2004). [CrossRef]
  18. C. G. Chen, P. T. Konkola, R. K. Heilmann, G. S. Pati, and M. L. Schattenburg, “Image metrology and system controls for scanning beam interference lithography,” J. Vac. Sci. Technol. B 19, 2335–2341 (2001). [CrossRef]
  19. M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of ultrahigh aspect ratio freestanding gratings on silicon-on-insulator wafers,” J. Vac. Sci. Technol. B 25, 2593–2597 (2007). [CrossRef]
  20. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1998).
  21. The term a/p in Eq. (4) of Ref.  and Eq. (2) of Ref.  should have been replaced with (a/p)2.
  22. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings—enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  23. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions—photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). [CrossRef]
  24. See for example J. E. Davis, H. L. Marshall, D. Dewey, and M. L. Schattenburg, “Analysis and modeling of anomalous scattering in the AXAF HETGS,” Proc. SPIE 3444, 76 (1998). [CrossRef]
  25. P. Mukherjee, A. Bruccoleri, R. K. Heilmann, M. L. Schattenburg, A. F. Kaplan, and L. J. Guo, “Plasma etch fabrication of 60∶1 aspect ratio silicon nanogratings on 200 nm pitch,” J. Vac. Sci. Technol. B 28, C6P70 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited