OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 10 — Apr. 1, 2011
  • pp: 1374–1381

Generation of optical vortices with an adaptive helical mirror

Devinder Pal Ghai  »View Author Affiliations

Applied Optics, Vol. 50, Issue 10, pp. 1374-1381 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1320 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Generation of optical vortices using a new design of adaptive helical mirror (AHM) is reported. The new AHM is a reflective device that can generate an optical vortex of any desired topological charge, both positive and negative, within its breakdown limits. The most fascinating feature of the AHM is that the topological charge of the optical vortex generated with it can be changed in real time by varying the excitation voltage. Generation of optical vortices up to topological charge 4 has been demonstrated. The presence of a vortex in the optical field generated with the AHM is confirmed by producing both fork and spiral fringes in an interferometric setup. Various design improvements to further enhance the performance of the reported AHM are discussed. Some of the important applications of AHM are also listed.

© 2011 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(140.3300) Lasers and laser optics : Laser beam shaping
(230.4040) Optical devices : Mirrors
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

Original Manuscript: October 5, 2010
Revised Manuscript: December 10, 2010
Manuscript Accepted: December 21, 2010
Published: March 25, 2011

Devinder Pal Ghai, "Generation of optical vortices with an adaptive helical mirror," Appl. Opt. 50, 1374-1381 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974). [CrossRef]
  2. K. T. Gahagan and G. A. Swartzlander Jr., “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16, 533–537(1999). [CrossRef]
  3. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002). [CrossRef] [PubMed]
  4. N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre–Gaussian modes,” J. Mod. Opt. 43, 2485–2492 (1996). [CrossRef]
  5. W. M. Lee and X. C. Yuan, “Observation of three-dimensional optical stacking of micro particles using a single Laguerre-Gaussian beam,” Appl. Phys. Lett. 83, 5124–5126 (2003). [CrossRef]
  6. M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156, 300–306 (1998). [CrossRef]
  7. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature (London) 412, 313–316 (2001). [CrossRef]
  8. G. Gibson, J. Courtial, and M. J. Padgett, “Free space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004). [CrossRef] [PubMed]
  9. J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander Jr., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97, 0539011 (2006). [CrossRef]
  10. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral interferometry,” Opt. Lett. 30, 1953–1955 (2005). [CrossRef] [PubMed]
  11. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13, 689–694 (2005). [CrossRef] [PubMed]
  12. P. Senthilkumaran, “Optical phase singularities in detection of laser beam collimation,” Appl. Opt. 42, 6314–6320 (2003). [CrossRef] [PubMed]
  13. G. Swartzlander, “The optical vortex lens,” Opt. Photonics News 17(11), 39–43 (2006). [CrossRef]
  14. J. A. Davis, I. Moreno, and K. Crabtree, “Optical processing with vortex-producing lenses,” Appl. Opt. 43, 1360–1367 (2004). [CrossRef] [PubMed]
  15. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327(1994). [CrossRef]
  16. K. Sueda, G. Miyaji, and M. Nakatsuka, “Laguerre–Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12, 3548–53 (2004). [CrossRef] [PubMed]
  17. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer generated hologram,” Opt. Lett. 17, 221–223 (1992). [CrossRef] [PubMed]
  18. S. Vyas and P. Senthilkumaran, “Two dimensional vortex lattices from pure wavefront tilts,” Opt. Commun. 283, 2767–2771 (2010). [CrossRef]
  19. X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wave length-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209–213 (2007). [CrossRef]
  20. J. Strohaber, T. Scarborough, and C. J. G. J. Uiterwaal, “Ultrashort intense-field optical vortices produced with laser-etched mirrors,” Appl. Opt. 46, 8583–8590 (2007). [CrossRef] [PubMed]
  21. R. K. Tyson, M. Scipioni, and J. Viegas, “Generation of an optical vortex with a segmented deformable mirror,” Appl. Opt. 47, 6300–6306 (2008). [CrossRef] [PubMed]
  22. A. Sobolev, T. Cherezova, V. Samarkin, and A. Kudryashov, “Screw phase dislocation formation by means of flexible bimorph mirror,” in Eighth International Conference on Laser and Fiber-Optical Networks Modeling (IEEE, 2006) pp. 434–437. [CrossRef]
  23. D. P. Ghai, P. Senthilkumaran, and R. S. Sirohi, “Adaptive helical mirror for generation of optical phase singularity,” Appl. Opt. 47, 1378–1383 (2008). [CrossRef] [PubMed]
  24. S. Takahashi, “Multilayer piezoelectric ceramic actuators and their applications,” Jpn. J. Appl. Phys. 24, 41–45(1995).
  25. A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties and Applications (Chapman and Hall, 1990).
  26. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics(Academic , 1971).
  27. V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990(1992). [CrossRef]
  28. I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993). [CrossRef]
  29. D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46, 419–423 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited