OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 10 — Apr. 1, 2011
  • pp: 1382–1388

Confocal-rainbow volume holographic imaging system

Jose M. Castro, Paul J. Gelsinger-Austin, Jennifer K. Barton, and Raymond K. Kostuk  »View Author Affiliations


Applied Optics, Vol. 50, Issue 10, pp. 1382-1388 (2011)
http://dx.doi.org/10.1364/AO.50.001382


View Full Text Article

Enhanced HTML    Acrobat PDF (766 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of broadband volume holographic imaging system in terms of depth selectivity is investigated. The mechanism for depth resolution degradation is explained. In order to overcome this resolution degradation, a novel imaging device, the confocal-rainbow volume holographic imaging system, is proposed. Modeling and experimental validation of the performance of this novel imaging system indicates that depth resolution < 16 μm is achievable. The lateral resolution of this device is < 2.5 μm along a field of view of 300 μm × 100 μm .

© 2011 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(090.4220) Holography : Multiplex holography
(090.7330) Holography : Volume gratings
(110.0110) Imaging systems : Imaging systems

ToC Category:
Holography

History
Original Manuscript: December 6, 2010
Manuscript Accepted: January 14, 2011
Published: March 25, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Jose M. Castro, Paul J. Gelsinger-Austin, Jennifer K. Barton, and Raymond K. Kostuk, "Confocal-rainbow volume holographic imaging system," Appl. Opt. 50, 1382-1388 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-10-1382


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Fujimoto and D. Farkas, Biomedical Optical Imaging(Oxford, 2009).
  2. W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854–856(2002). [CrossRef]
  3. A. Sinha, W. Sun, T. Shih, and G. Barbastathis, “Volume holographic imaging in the transmission geometry,” Appl. Opt. 43, 1533–1551 (2004). [CrossRef] [PubMed]
  4. Z. Li, D. P. Saltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005). [CrossRef]
  5. A. Sinha and G. Barbastathis, “Broadband volume holographic imaging,” Appl. Opt. 43, 5214–5221 (2004). [CrossRef] [PubMed]
  6. Y. Luo, P. J. Gelsinger, G. Barbastathis, J. K. Barton, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial filters,” Opt. Lett. 33, 566–568 (2008). [CrossRef] [PubMed]
  7. P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng. 49, 043001 (2010). [CrossRef]
  8. Y. Luo, J. M. Castro, J. K. Barton, R. K. Kostuk, and G. Barbastathis, “Simulation and experiments of aperiodic and multiplexed gratings in volume holographic imaging systems,” Opt. Express 18, 19273–19285 (2010). [CrossRef] [PubMed]
  9. W. Sun and G. Barbastathis, “Rainbow volume holographic imaging,” Opt. Lett. 30, 976–978 (2005). [CrossRef] [PubMed]
  10. J. M. Castro, E. de Leon, J. Barton, and R. Kostuk, “Analysis of diffracted image patterns from volume holographic imaging systems and applications to image processing,” Appl. Opt. 50, 170–176 (2011). [CrossRef] [PubMed]
  11. J. M. Castro, J. Brownlee, E. de Leon, J. Barton, and R. K. Kostuk, “Resolution dependance on index modulation profile and effective thickness in volume holographic imaging systems,” Appl. Opt. (to be published).
  12. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  13. L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, 1981).
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  15. A. Sato and R. Kostuk, “Holographic grating for dense wavelength division optical filters at 1550 nm using phenanthrenequinone doped poly (methylmethacrylate),” Proc. SPIE 5216, 44–52 (2003). [CrossRef]
  16. D. Kermish, “Nonuniform sinousoidally modulated dielectric gratings,” J. Opt. Soc. Am. 59, 1409–1414 (1969). [CrossRef]
  17. R. Kowarschik, “Diffraction efficiency of attenuated sinusoidally modulated gratings in volume holograms,” J. Mod. Opt. 23, 1039–1051 (1976). [CrossRef]
  18. T. Kubota, “The diffraction efficiency of holograms gratings recorded in an absorptive medium,” Opt. Commun. 16, 347–349 (1976). [CrossRef]
  19. S. B. Oh, J. M. Watson, and G. Barbastathis, “Theoretical analysis of curved Bragg diffraction images from plane reference volume holograms,” Appl. Opt. 48, 5984–5996 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited