OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 10 — Apr. 1, 2011
  • pp: 1434–1441

Ab initio synthesis of linearly compensated zoom lenses by evolutionary programming

Sourav Pal and Lakshminarayan Hazra  »View Author Affiliations

Applied Optics, Vol. 50, Issue 10, pp. 1434-1441 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (361 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An approach for ab initio synthesis of the thin lens structure of linearly compensated zoom lenses is reported. This method uses evolutionary programming that explores the available configuration space formed by powers of the individual components, the intercomponent separations, and the relative movement parameters of the moving components. Useful thin lens structures of optically and linearly compensated zoom lens systems are obtained by suitable formulation of the merit function of optimization. This paper reports our investigations on three-component zoom lens structures. Illustrative numerical results are presented.

© 2011 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(220.2740) Optical design and fabrication : Geometric optical design
(220.3620) Optical design and fabrication : Lens system design
(220.3630) Optical design and fabrication : Lenses
(220.4830) Optical design and fabrication : Systems design
(080.2468) Geometric optics : First-order optics

ToC Category:
Optical Design and Fabrication

Original Manuscript: November 17, 2010
Manuscript Accepted: December 6, 2010
Published: March 29, 2011

Sourav Pal and Lakshminarayan Hazra, "Ab initio synthesis of linearly compensated zoom lenses by evolutionary programming," Appl. Opt. 50, 1434-1441 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Clark, Zoom Lenses (Hilger, 1973).
  2. M. Laikin, Lens Design (Dekker, 2001).
  3. R. Kingslake, “The development of the zoom lens,” J. SMPTE 69, 534–544 (1960).
  4. E. Betensky, “Zoom lens principles and types,” in Lens Design, Vol. CR41 of SPIE Critical Review Series (SPIE, 1992), pp. 88–116.
  5. T. H. Jamieson, “Thin-lens theory of zoom systems,” J. Mod. Opt. 17, 565–584 (1970). [CrossRef]
  6. A. Mikš, J. Novák, and P. Novák, “Method of zoom lens design,” Appl. Opt. 47, 6088–6098 (2008). [CrossRef] [PubMed]
  7. K. Yamaji, “Design of zoom lenses,” in Progress in Optics, Vol.  VI, E.Wolf, ed. (North-Holland, 1967), pp. 107–170.
  8. K. Tanaka, “Paraxial theory of lens design in terms of Gaussian brackets,” in Progress in Optics, Vol.  XXIII, E.Wolf, ed. (North-Holland, 1984), pp. 65–111.
  9. X. Cheng, Y. Wang, Q. Hao, and J. M. Sasian, “Expert system for generating initial layout of zoom systems with multiple moving lens group,” Opt. Eng. 44, 1–8 (2005). [CrossRef]
  10. F. G. Back and H. Lowen, “The basic theory of varifocal lenses with linear movement and optical compensation,” J. Opt. Soc. Am. 44, 684–691 (1954). [CrossRef]
  11. L. Bergstein, “General theory of optically compensated varifocal systems,” J. Opt. Soc. Am. 48154–171 (1958). [CrossRef]
  12. A. Mikš and J. Novák, “Analysis of two-element zoom systems based on variable power lenses,” Opt. Express 18, 6797–6810(2010). [CrossRef] [PubMed]
  13. D. V. Wick and T. Martinez, “Adaptive optical zoom,” Opt. Eng. 43, 8–9 (2004). [CrossRef]
  14. R. J. Pegis and W. G. Peck, “First-order design theory for linearly compensated zoom systems,” J. Opt. Soc. Am. 52, 905–911 (1962). [CrossRef]
  15. G. Wooters and E. W. Silvertooth, “Optically compensated zoom lens,” J. Opt. Soc. Am. 55, 347–351 (1965). [CrossRef]
  16. I. Rechenberg, Evolutionsstrategie: Optimeirung Technischer System nach Prinzipen der Biologischen Evolution (Frommen-Holzboog Verlag, 1973).
  17. D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning (Addison-Wesley, 1989).
  18. L. N. Hazra, “Structural design of multi-component lens systems,” Appl. Opt. 23, 4440–4443 (1984). [CrossRef] [PubMed]
  19. L. N. Hazra and S. Banerjee, “Genetic algorithm in structural design of Cooke triplet lenses,” Proc. SPIE 3737, 172–179(1999). [CrossRef]
  20. S. Banerjee and L. N. Hazra, “Structural design of broken contact doublets with prespecified aberration targets using genetic algorithm,” J. Mod. Opt. 49, 1111–1123 (2002). [CrossRef]
  21. S. Chatterjee and L. N. Hazra, “Structural design of a lens component with prespecified aberration targets by evolutionary algorithm ,” Proc. SPIE 6668, 66680S (2007). [CrossRef]
  22. S. Pal and L. N. Hazra, “Structural design of optically compensated zoom lenses using genetic algorithm,” Proc. SPIE 7429, 742910 (2009). [CrossRef]
  23. L. N. Hazra and S. Pal, “A novel approach for structural synthesis of zoom systems,” Proc. SPIE 7786, 778607 (2010). [CrossRef]
  24. http://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
  25. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  26. H. H. Hopkins, Wave Theory of Aberrations (Oxford University, 1950).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited