OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 10 — Apr. 1, 2011
  • pp: 1469–1476

Long-distance axial trapping with Laguerre–Gaussian beams

Raktim Dasgupta, Ravi Shanker Verma, Sunita Ahlawat, Deepa Chaturvedi, and Pradeep Kumar Gupta  »View Author Affiliations


Applied Optics, Vol. 50, Issue 10, pp. 1469-1476 (2011)
http://dx.doi.org/10.1364/AO.50.001469


View Full Text Article

Enhanced HTML    Acrobat PDF (621 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that the axial spread of the focal volume of a tightly focused beam propagating through a glass–water interface is much reduced for Laguerre–Gaussian (LG) modes as compared to the TEM 00 mode. Therefore, use of the LG beam helps in achieving a significant improvement of the axial trapping range in optical tweezers. We demonstrate the use of LG modes to manipulate biological cells from the bottom layer of the medium to the top surface layer. Exposure of the cells to a higher oxygen concentration at the surface layer is used for estimation of the intramembrane oxygen diffusion rate.

© 2011 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Tweezers or Optical Manipulation

History
Original Manuscript: November 15, 2010
Revised Manuscript: February 12, 2011
Manuscript Accepted: February 13, 2011
Published: March 31, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Raktim Dasgupta, Ravi Shanker Verma, Sunita Ahlawat, Deepa Chaturvedi, and Pradeep Kumar Gupta, "Long-distance axial trapping with Laguerre–Gaussian beams," Appl. Opt. 50, 1469-1476 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-10-1469


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  2. T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Enhancement of laser trapping force by spherical aberration correction using a deformable mirror,” Jpn. J. Appl. Phys. 42, L701–L703 (2003). [CrossRef]
  3. S. N. S. Reihani, M. A. Charsooghi, H. R. Khalesifard, and R. Golestanian, “Efficient in-depth trapping with an oil-immersion objective lens,” Opt. Lett. 31, 766–768 (2006). [CrossRef] [PubMed]
  4. S. N. S. Reihani and L. B. Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett. 32, 1998–2000 (2007). [CrossRef] [PubMed]
  5. R. Dasgupta, S. Ahlawat, and P. K. Gupta, “Trapping of micron-sized objects at a liquid–air interface,” J. Opt. A: Pure Appl. Opt. 9, S189–S195 (2007). [CrossRef]
  6. A. Jesacher, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Holographic optical tweezers for object manipulations at an air–liquid surface,” Opt. Express 14, 6342–6352 (2006). [CrossRef] [PubMed]
  7. A. T. Oneil and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers,” Opt. Commun. 193, 45–50 (2001). [CrossRef]
  8. M. E. J. Friese, H. Rubinsztein-Dunlop, N. R. Heckenberg, and E. W. Dearden, “Determination of the force constant of a single-beam gradient trap by measurement of backscattered light,” Appl. Opt. 35, 7112–7116 (1996). [CrossRef] [PubMed]
  9. N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998). [CrossRef]
  10. P. Török and P. R. T. Munro, “The use of Gauss–Laguerre vector beams in STED microscopy,” Opt. Express 12, 3605–3617 (2004). [CrossRef] [PubMed]
  11. S. Deng, L. Liul, Y. Cheng, R. Li, and Z. Xu, “Investigation of the influence of the aberration induced by a plane interface on STED microscopy,” Opt. Express 17, 1714–1725 (2009). [CrossRef] [PubMed]
  12. M.-T. Wei and A. Chiou, “Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants,” Opt. Express 13, 5798–5806 (2005). [CrossRef] [PubMed]
  13. “Laurdan generalized polarization: from cuvette to microscope,” http://www.formatex.org/microscopy3/pdf/pp1007-1014.pdf, retrieved on 3 May 2010.
  14. S. Fischokoff and J. M. Vanderkooi, “Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene,” J. Gen. Physiol. 65, 663–676 (1975). [CrossRef]
  15. T. Parasassi and E. Gratton, “Packing of phospholipid vesicles studied by oxygen quenching of Laurdan fluorescence,” J. Fluoresc. 2, 167–174 (1992). [CrossRef]
  16. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef] [PubMed]
  17. R. M. Simmons, J. T. Finer, S. Chu, J. A. Spudich, P. Török, and P. R. T. Munro, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70, 1813–1822(1996). [CrossRef] [PubMed]
  18. H. Schneckenburger, M. Wagner, M. Kretzschmar, W. S. L. Strauss, and R. Sailer, “Laser-assisted fluorescence microscopy for measuring cell membrane dynamics,” Photochem. Photobiol. Sci. 3, 817–822 (2004). [CrossRef] [PubMed]
  19. J. R. Dynlacht and M. H. Fox, “Heat-induced changes in membrane fluidity of Chinese hamster ovary cells measured by flow cytometry,” Rad. Res. 130, 48–54 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Supplementary Material


» Media 1: MPG (3584 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited