OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 10 — Apr. 1, 2011
  • pp: 1488–1500

Relationships between the generalized functional method and other methods of nonimaging optical design

John Bortz and Narkis Shatz  »View Author Affiliations


Applied Optics, Vol. 50, Issue 10, pp. 1488-1500 (2011)
http://dx.doi.org/10.1364/AO.50.001488


View Full Text Article

Enhanced HTML    Acrobat PDF (1454 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The recently developed generalized functional method provides a means of designing nonimaging concentrators and luminaires for use with extended sources and receivers. We explore the mathematical relationships between optical designs produced using the generalized functional method and edge-ray, aplanatic, and simultaneous multiple surface (SMS) designs. Edge-ray and dual-surface aplanatic designs are shown to be special cases of generalized functional designs. In addition, it is shown that dual-surface SMS designs are closely related to generalized functional designs and that certain computational advantages accrue when the two design methods are combined. A number of examples are provided.

© 2011 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(110.0110) Imaging systems : Imaging systems
(220.1770) Optical design and fabrication : Concentrators
(110.2945) Imaging systems : Illumination design
(080.4298) Geometric optics : Nonimaging optics

History
Original Manuscript: November 5, 2010
Revised Manuscript: January 26, 2011
Manuscript Accepted: January 26, 2011
Published: March 31, 2011

Citation
John Bortz and Narkis Shatz, "Relationships between the generalized functional method and other methods of nonimaging optical design," Appl. Opt. 50, 1488-1500 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-10-1488


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Jolley, J. Waldram, and G. Wilson, Theory and Design of Illuminating Engineering Equipment (Chapman & Hall, 1930).
  2. W. Elmer, The Optical Design of Reflectors (Wiley, 1980).
  3. R. Winston, J. Miñano, and P. Benítez, with contributions by N. Shatz and J. Bortz, Nonimaging Optics (Elsevier, 2005), pp. 160–161.
  4. R. Winston and H. Ries, “Nonimaging reflectors as functionals of the desired irradiance,” J. Opt. Soc. Am. A 10, 1902–1908(1993). [CrossRef]
  5. N. Boldyrev, “About calculation of asymmetrical specular reflectors,” Svetotekhnika 7, 7–8 (1932).
  6. V. Komissarov, “The foundations of calculating specular prismatic fittings,” Trudy VEI 43, 6–61 (1941).
  7. J. Schruben, “Formulation of a reflector-design problem for a lighting fixture,” J. Opt. Soc. Am. 62, 1498–1501 (1972). [CrossRef]
  8. B. Westcott, Shaped Reflector Antenna Design (Wiley, 1983).
  9. I. Galindo, W. Imbriale, and R. Mittra, “On the theory of the synthesis of single and dual offset shaped reflector antennas,” IEEE Trans. Antennas Propag. 35, 887–896 (1987). [CrossRef]
  10. B. Westcott and A. Zaporozhets, “Single reflector synthesis using an analytical gradient procedure,” Electron. Lett. 30, 1462–1463 (1994). [CrossRef]
  11. R. Winston, J. Miñano, and P. Benítez, with contributions by N. Shatz and J. Bortz, Nonimaging Optics (Elsevier, 2005), pp. 173–180.
  12. V. Galindo, “Design of dual-reflector antennas with proprietary phase and amplitude distributions,” IEEE Trans. Antennas Propag. 12, 403–408 (1964). [CrossRef]
  13. B. Westcott, F. Stevens, and F. Brickell, “GO synthesis of offset dual reflectors,” IEE Proc. H 128, 11–18 (1981). [CrossRef]
  14. B. Westcott, R. Graham, and I. Wolton, “Synthesis of dual-offset shaped reflectors for arbitrary aperture shapes using continuous domain deformation,” IEE Proc. H 133, 57–64 (1986). [CrossRef]
  15. B. Westcott and A. Zaporozhets, “Dual-reflector synthesis based on analytical gradient-iteration procedures,” IEE Proc. H 142, 129–135 (1995). [CrossRef]
  16. J. Bortz and N. Shatz, “Generalized functional method of nonimaging optical design,” Proc. SPIE 6338, 32–47 (2006). [CrossRef]
  17. H. Ries and A. Rabl, “Edge-ray principle of nonimaging optics,” J. Opt. Soc. Am. A 11, 2627–2632 (1994). [CrossRef]
  18. R. Winston, J. Miñano, and P. Benítez, with contributions by N. Shatz and J. Bortz, Nonimaging Optics (Elsevier, 2005), pp. 47–49.
  19. K. Schwarzschild, “Untersuchungen zur geometrischen Optik I–III,” Abh. Konigl. Ges. Wis. Gottingen Math-phys. Kl. 4 (1905–1906).
  20. A. Head, “The two-mirror aplanat,” Proc. Phys. Soc. London Sec. B 70, 945–949 (1957). [CrossRef]
  21. D. Lynden-Bell, “Exact optics: a unification of optical telescope design,” Mon. Not. R. Astron. Soc. 334, 787–796 (2002). [CrossRef]
  22. R. Willstrop and D. Lynden-Bell, “Exact optics—II. exploration of designs on- and off-axis,” Mon. Not. R. Astron. Soc. 342, 33–49 (2003). [CrossRef]
  23. J. Miñano and J. González, “New method of design of nonimaging concentrators,” Appl. Opt. 31, 3051–3060 (1992). [CrossRef] [PubMed]
  24. J. Miñano, P. Benítez, and J. González, “RX: a nonimaging concentrator,” Appl. Opt. 34, 2226–2235 (1995). [CrossRef] [PubMed]
  25. J. Miñano, J. González, and P. Benítez, “A high-gain, compact, nonimaging concentrator: RXI,” Appl. Opt. 34, 7850–7856(1995). [CrossRef] [PubMed]
  26. O. Dross, R. Mohedano, P. Benítez, J. Miñano, J. Chavez, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004). [CrossRef]
  27. R. Winston, J. Miñano, and P. Benítez, with contributions by N. Shatz and J. Bortz, Nonimaging Optics (Elsevier, 2005), pp. 181–234.
  28. J. Miñano, “Two-dimensional nonimaging concentrators with inhomogeneous media: a new look,” J. Opt. Soc. Am. A 2, 1826–1831 (1985). [CrossRef]
  29. J. Miñano, “Design of three-dimensional nonimaging concentrators with inhomogeneous media,” J. Opt. Soc. Am. A 3, 1345–1353 (1986). [CrossRef]
  30. P. Davies, “Edge-ray principle of nonimaging optics,” J. Opt. Soc. Am. A 11, 1256–1259 (1994). [CrossRef]
  31. R. Winston, J. Miñano, and P. Benítez, with contributions by N. Shatz and J. Bortz, Nonimaging Optics (Elsevier, 2005), pp. 50–63.
  32. R. Winston, J. Miñano, and P. Benítez, with contributions by N. Shatz and J. Bortz, Nonimaging Optics (Elsevier, 2005), pp. 89–92.
  33. J. Gordon, D. Feuermann, and P. Young, “Unfolded aplanats for high-concentration photovoltaics,” Opt. Lett. 33, 1114–1116 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited