OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 11 — Apr. 10, 2011
  • pp: 1554–1559

Optimal recording wavelength for maximum diffraction efficiency of thermal fixing in LiNbO 3 : Fe

Peipei Hou, Ya’nan Zhi, Jianfeng Sun, and Liren Liu  »View Author Affiliations

Applied Optics, Vol. 50, Issue 11, pp. 1554-1559 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (458 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optimal recording wavelength for maximum diffraction efficiency of thermal fixing in LiNbO 3 : Fe crystal is investigated. Holographic gratings are recorded using three typical recording wavelengths including 488, 514, and 633 nm . Optimal switching from recording to thermal fixing is taken into consideration. The fixed holograms are developed by an original recording setup. Diffraction efficiencies of recording and thermal fixing are measured by a two-wave coupling technique. The theoretical and experimental results are analyzed and compared. With a blue beam, the nonvolatile hologram with maximum fixing efficiency is achieved. This work can obtain high persistent diffraction of the nonvolatile holographic storage in LiNbO 3 : Fe crystals.

© 2011 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings
(160.2900) Materials : Optical storage materials
(160.3730) Materials : Lithium niobate
(210.2860) Optical data storage : Holographic and volume memories

ToC Category:

Original Manuscript: October 11, 2010
Revised Manuscript: December 19, 2010
Manuscript Accepted: January 7, 2011
Published: April 5, 2011

Peipei Hou, Ya’nan Zhi, Jianfeng Sun, and Liren Liu, "Optimal recording wavelength for maximum diffraction efficiency of thermal fixing in LiNbO3:Fe," Appl. Opt. 50, 1554-1559 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004). [CrossRef]
  2. E. M. Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17, 1140–1146 (2000). [CrossRef]
  3. C. Dai, L. Liu, D. Liu, and Y. Zhou, “Refractive-index change and sensitivity improvement in holographic recording in LiNbO3:Ce:Cu crystals with green light,” Chin. Opt. Lett. 3, 507–509 (2005).
  4. J. Amodei and D. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971). [CrossRef]
  5. D. L. Staebler and J. J. Amodei, “Thermally fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972). [CrossRef]
  6. A. Yariv, S. S. Orlov, and G. A. Rakuljic, “Holographic storage dynamics in lithium niobate: theory and experiment,” J. Opt. Soc. Am. B 13, 2513–2523 (1996). [CrossRef]
  7. B. Liu, L. Liu, and L. Xu, “Characteristics of recording and thermal fixing in lithium niobate,” Appl. Opt. 37, 2170–2176 (1998). [CrossRef]
  8. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005). [CrossRef]
  9. S. Beer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998). [CrossRef]
  10. A. Méndez and L. Arizmendi, “Maximum diffraction efficiency of fixed holograms in lithium niobate,” Opt. Mater. 10, 55–59(1998). [CrossRef]
  11. D. L. Staebler and W. Phillips, “Fe-doped LiNbO3 for read-write applications,” Appl. Opt. 13, 788–794 (1974). [CrossRef] [PubMed]
  12. P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–517 (1989). [CrossRef]
  13. C. Gu and P. Yeh, “Diffraction properties of fixed gratings in photorefractive media,” J. Opt. Soc. Am. B 7, 2339–2346 (1990). [CrossRef]
  14. N. K. Kukhtarev, “Kinetics of hologram recording and erasure in electro-optic crystals,” Sov. Tech. Phys. Lett. 2, 438–440(1976).
  15. N. K. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optics crystals.I. Steady state,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  16. M. Aguilar, M. Carrascosa, and F. Agulló-López, “Optimization of selective erasure in photorefractive memories,” J. Opt. Soc. Am. B 14, 110–115 (1997). [CrossRef]
  17. R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354(1978). [CrossRef]
  18. R. Orlowski and E. Krätzig, “Holographic investigation of charge transport in electro-optic crystals,” Ferroelectrics 26, 831–834 (1980). [CrossRef]
  19. J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D. 36, R1–R16 (2003). [CrossRef]
  20. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997). [CrossRef]
  21. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  22. L. Ren, L. Liu, D. Liu, J. Zu, and Z. Luan, “Optimal switching from recording to fixing for high diffraction from a LiNbO3:Ce:Cu photorefractive nonvolatile hologram,” Opt. Lett. 29, 186–188 (2004). [CrossRef] [PubMed]
  23. I. de Oliveira and J. Frejlich, “Diffraction efficiency measurement in photorefractive thick volume holograms,” J. Opt. A: Pure Appl. Opt. 5, S428–S431 (2003). [CrossRef]
  24. D. Liu, L. Liu, Y. Liu, and C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000). [CrossRef]
  25. J. Otten, A. Ozols, M. Reinfelde, and K. H. Ringhofer, “Self-enhancement in lithium niobate,” Opt. Commun. 72, 175–179(1989). [CrossRef]
  26. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raüber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977). [CrossRef]
  27. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005), pp. 35–48.
  28. M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, “Electrooptic properties of lithium niobate crystals for extremely high external electric fields,” Appl. Phys. B 76, 403–406 (2003). [CrossRef]
  29. S. Friess and B. Bauschulte, “Wavelength dependence of the electrooptic coefficients in LiNbO3:Fe,” Physica Status Solidi. A 125, 369–374 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited