OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 11 — Apr. 10, 2011
  • pp: 1587–1592

Reply to “Comments on multiple aperture cameras”

David J. Brady  »View Author Affiliations


Applied Optics, Vol. 50, Issue 11, pp. 1587-1592 (2011)
http://dx.doi.org/10.1364/AO.50.001587


View Full Text Article

Enhanced HTML    Acrobat PDF (298 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In response to “Comments on ‘Design and characterization of thin multiple aperture infrared cameras,’” Appl. Opt. 50, 1584 (2011), I explain how aliasing and regularization impact noise scaling in multiple aperture imagers.

© 2011 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(110.3080) Imaging systems : Infrared imaging
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

History
Original Manuscript: July 27, 2010
Revised Manuscript: November 28, 2010
Manuscript Accepted: January 31, 2011
Published: April 7, 2011

Citation
David J. Brady, "Reply to “Comments on multiple aperture cameras”," Appl. Opt. 50, 1587-1592 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-11-1587


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. W. Haney, “Performance scaling in flat imagers,” Appl. Opt. 45, 2901–2910 (2006). [CrossRef] [PubMed]
  2. D. J. Brady, M. A. Fiddy, U. Shahid, and T. J. Suleski, Compressive Optical MONTAGE Photography Initiative: Noise and Error Analysis (Optical Society of America, 2005).
  3. A. Portnoy, N. Pitsianis, X. Sun, D. Brady, R. Gibbons, A. Silver, R. Te Kolste, C. Chen, T. Dillon, and D. Prather, “Design and characterization of thin multiple aperture infrared cameras,” Appl. Opt. 48, 2115–2126 (2009). [CrossRef] [PubMed]
  4. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001). [CrossRef]
  5. S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14, 47–57 (2004). [CrossRef]
  6. S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20, 21–36 (2003). [CrossRef]
  7. V. R. Bhakta, M. Somayaji, S. C. Douglas, and M. P. Christensen, “Experimentally validated computational imaging with adaptive multiaperture folded architecture,” Appl. Opt. 49, B51–B58 (2010). [CrossRef] [PubMed]
  8. F. de la Barrière, G. Druart, N. Guérineau, J. Taboury, J. Primot, and J. Deschamps, “Modulation transfer function measurement of a multichannel optical system,” Appl. Opt. 49, 2879–2890 (2010). [CrossRef] [PubMed]
  9. A. V. Kanaev, J. R. Ackerman, E. F. Fleet, and D. A. Scribner, “TOMBO sensor with scene-independent superresolution processing,” Opt. Lett. 32, 2855–2857 (2007). [CrossRef] [PubMed]
  10. P. M. Shankar, W. C. Hasenplaugh, R. L. Morrison, R. A. Stack, and M. A. Neifeld, “Multiaperture imaging,” Appl. Opt. 45, 2871–2883 (2006). [CrossRef] [PubMed]
  11. F. Champagnat, G. Le Besnerais, and C. Kulcsár, “Statistical performance modeling for superresolution: a discrete data-continuous reconstruction framework,” J. Opt. Soc. Am. A 26, 1730–1746 (2009). [CrossRef]
  12. K. Krapels, R. G. Driggers, E. Jacobs, S. Burks, and S. Young, “Characteristics of infrared imaging systems that benefit from superresolution reconstruction,” Appl. Opt. 46, 4594–4603(2007). [CrossRef] [PubMed]
  13. M. W. Haney, “Comments on ‘Design and characterization of thin multiple aperture infrared cameras,’” Appl. Opt. , 50, 1584–1586 (2011). [CrossRef] [PubMed]
  14. D. J. Brady, Optical Imaging and Spectroscopy, N.J.Hoboken, ed. (Wiley-OSA, 2009). [CrossRef]
  15. M. Harwit and N. J. A. Sloane, Hadamard Transform Optics (Academic, 1979).
  16. A. Ashok, P. K. Baheti, and M. A. Neifeld, “Compressive imaging system design using task-specific information,” Appl. Opt. 47, 4457–4471 (2008). [CrossRef] [PubMed]
  17. M. A. Neifeld and J. Ke, “Optical architectures for compressive imaging,” Appl. Opt. 46, 5293–5303 (2007). [CrossRef] [PubMed]
  18. N. P. Pitsianis, D. J. Brady, A. Portnoy, X. Sun, T. Suleski, M. A. Fiddy, M. R. Feldman, and R. D. TeKolste, “Compressive imaging sensors,” in Proc. SPIE, 6232, A2320(2006).
  19. N. P. Pitsianis, D. J. Brady, and X. B. Sun, “Sensor-layer image compression based on the quantized cosine transform,” Proc. SPIE 5817, 250–257 (2005). [CrossRef]
  20. M. Shankar, N. P. Pitsianis, and D. J. Brady, “Compressive video sensors using multichannel imagers,” Appl. Opt. 49, B9–B17 (2010). [CrossRef] [PubMed]
  21. M. E. Gehm, S. T. McCain, N. P. Pitsianis, D. J. Brady, P. Potuluri, and M. E. Sullivan, “Static two-dimensional aperture coding for multimodal multiplex spectroscopy,” Appl. Opt. 45, 2965–2974 (2006). [CrossRef] [PubMed]
  22. A. A. Wagadarikar, M. E. Gehm, and D. J. Brady, “Performance comparison of aperture codes for multimodal, multiplex spectroscopy,” Appl. Opt. 46, 4932–4942 (2007). [CrossRef] [PubMed]
  23. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027(2007). [CrossRef] [PubMed]
  24. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51 (2008). [CrossRef] [PubMed]
  25. A. D. Portnoy, N. P. Pitsianis, X. Sun, and D. J. Brady, “Multichannel sampling schemes for optical imaging systems,” Appl. Opt. 47, B76–B85 (2008). [CrossRef] [PubMed]
  26. S. Prasad, “Digital superresolution and the generalized sampling theorem,” J. Opt. Soc. Am. A 24, 311–325(2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited