OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 11 — Apr. 10, 2011
  • pp: 1620–1624

Selective optical pumping process in Doppler-broadened atoms

Shuangqiang Liu, Yundong Zhang, Daikun Fan, Hao Wu, and Ping Yuan  »View Author Affiliations


Applied Optics, Vol. 50, Issue 11, pp. 1620-1624 (2011)
http://dx.doi.org/10.1364/AO.50.001620


View Full Text Article

Enhanced HTML    Acrobat PDF (408 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By solving the optical Bloch equations with the rate-equation approximation, we calculate the time dependence of the magnetic sublevel populations of Doppler-broadened atoms. With an increase of the left-circularly polarized pump intensity, the population fraction of a certain sublevel of the excited state almost reaches 0.3, resulting in anisotropy in the excited state, which is important to the optical filter based on circular birefringence and dichroism. Furthermore, numerical results show that the real saturation pump intensity for the moving atoms is much larger than that for the resting atoms.

© 2011 Optical Society of America

OCIS Codes
(020.2930) Atomic and molecular physics : Hyperfine structure
(140.5560) Lasers and laser optics : Pumping
(020.1335) Atomic and molecular physics : Atom optics
(020.2649) Atomic and molecular physics : Strong field laser physics

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: November 5, 2010
Revised Manuscript: January 28, 2011
Manuscript Accepted: February 12, 2011
Published: April 8, 2011

Citation
Shuangqiang Liu, Yundong Zhang, Daikun Fan, Hao Wu, and Ping Yuan, "Selective optical pumping process in Doppler-broadened atoms," Appl. Opt. 50, 1620-1624 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-11-1620


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Shigeru, “Doppler-free laser spectroscopic techniques with optical pumping in D1 lines of alkali atoms,” J. Opt. Soc. Am. B 2, 1431–1437 (1985). [CrossRef]
  2. M. L. Harris, C. S. Adams, S. L. Cornish, I. C. Mcleod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006). [CrossRef]
  3. S. Chakrabati, B. Ray, and P. N. Glosh, “Velocity selective optical pumping and repumping effects with counter and copropagating laser radiations for D2 lines of rubidium,” Eur. Phys. J. D 42, 359–368 (2007). [CrossRef]
  4. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996). [CrossRef]
  5. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  6. C. Y. Ye and A. S. Zibrov, “Width of the electromagnetically induced transparency resonance in atomic vapor,” Phys. Rev. A 65, 023806 (2002). [CrossRef]
  7. H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping effects in electromagnetically induced transparency,” Opt. Express 16, 12163–12170 (2008). [CrossRef] [PubMed]
  8. Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theoretical model for an atomic optical filter based on optical anisotropy,” J. Opt. Soc. Am. B 26, 1755–1759 (2009). [CrossRef]
  9. Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theory and experiment for atomic optical filter based on optical anisotropy in rubidium,” Opt. Commun. 282, 4548–4551 (2009). [CrossRef]
  10. V. I. Balykin, “Cyclic interaction of Na atoms with circularly polarized laser radiaton,” Opt. Commun. 33, 31–36 (1980). [CrossRef]
  11. G. Moon, S. R. Shin, and H. Noh, “Analytic solutions for the populations of an optically-pumped multilevel atom,” J. Korean Phys. Soc. 53552–557 (2008). [CrossRef]
  12. J. J. McClelland and M. H. Kelley, “Detailed look at aspects of optical pumping in sodium,” Phys. Rev. A 31, 3704–3710(1985). [CrossRef] [PubMed]
  13. P. M. Farrell, W. R. MacGillivary, and M. C. Standage, “Quantum-electro dynamic calculation of hyperfine-state populations in atomic sodium,” Phys. Rev. A 37, 4240–4251(1988). [CrossRef] [PubMed]
  14. S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, G. Yang, P. R. Herczfeld, and D. M. Allocca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett. 20, 1427–1429 (1995). [CrossRef] [PubMed]
  15. L. D. Turner, V. Karaganov, P. J. O. Teubner, and R. E. Scholten, “Sub-Doppler bandwidth atomic optical filter,” Opt. Lett. 27, 500–502 (2002). [CrossRef]
  16. Z. He, Y. Zhang, S. Liu, and P. Yuan, “Transmission characteristics of an excited-state induced dispersion optical of rubidium at 775.9 nm,” Chin. Opt. Lett. 5, 252–254 (2007).
  17. A. Cere, V. Parigi, M. Abad, F. Wolfgramm, A. Predojevic, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett. 34, 1012–1014 (2009). [CrossRef] [PubMed]
  18. R. London, The Quantum Theory of Light, 2nd ed. (Oxford University, 1983).
  19. P. Meystre and M. Sargent III, Elements of Quantum Optics (Springer, 2007). [CrossRef]
  20. J. Gea-Banacloche, H. Wu, and M. Xiao, “Transmission spectrum of Doppler-broadened two-level atoms in a cavity in the strong-coupling regime,” Phys. Rev. A 78, 023828 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited