OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 12 — Apr. 20, 2011
  • pp: 1707–1716

Hierarchical prediction structure for subimage coding and multithreaded parallel implementation in integral imaging

Jian Wei, Shigang Wang, Yan Zhao, and Fushou Jin  »View Author Affiliations


Applied Optics, Vol. 50, Issue 12, pp. 1707-1716 (2011)
http://dx.doi.org/10.1364/AO.50.001707


View Full Text Article

Enhanced HTML    Acrobat PDF (1372 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We are concerned with the coding of subimage-transformed elemental images to solve the problems of data transmission and storage in three-dimensional (3D) integral imaging in this paper. First, we use the subimage transform for preprocessing of the elemental image array (EIA). Because of the similarity of correlation distributions between the subimage array (SIA) and multiview video, we present a hierarchi cal prediction structure for SIA coding based on the hierarchical B picture (HBP) structure for multiview video coding. Moreover, we design a multithreaded parallel implementation for the proposed structure according to inter-row prediction dependencies. Experiments are performed on both EIAs and SIAs. The results show that employing the same coding strategy, the proposed parallel implemented HBP scheme achieves not only higher image quality and better 3D effect but also lower coding delay at low bit rates compared with the previously reported Hilbert-curve-based scheme.

© 2011 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.6890) Image processing : Three-dimensional image processing
(110.6880) Imaging systems : Three-dimensional image acquisition
(200.4960) Optics in computing : Parallel processing

ToC Category:
Image Processing

History
Original Manuscript: September 29, 2010
Revised Manuscript: December 17, 2010
Manuscript Accepted: December 22, 2010
Published: April 13, 2011

Citation
Jian Wei, Shigang Wang, Yan Zhao, and Fushou Jin, "Hierarchical prediction structure for subimage coding and multithreaded parallel implementation in integral imaging," Appl. Opt. 50, 1707-1716 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-12-1707


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. C. Forman, A. Aggoun, and M. McCormick, “A novel coding scheme for full parallax 3D-TV pictures,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 1997), Vol.  4, pp. 2945–2947.
  2. R. Zaharia, A. Aggoun, and M. McCormick, “Adaptive 3D-DCT compression algorithm for continuous parallax 3D integral imaging,” Signal Process. Image Commun. 17, 231–242(2002). [CrossRef]
  3. M. C. Forman and A. Aggoun, “Quantisation strategies for 3D-DCT-based compression of full parallax 3D images,” in Proceedings of the Sixth International Conference on Image Processing and Its Application (IEEE, 1997), pp. 32–35. [CrossRef]
  4. R. Zaharia, A. Aggoun, and M. McCormick, “Compression of full parallax colour integral 3D TV image data based on sub-sampling of chrominance components,” in Proceedings of the Data Compression Conference (IEEE, 2001), p. 527.
  5. A. Aggoun, “A 3D DCT compression algorithm for omnidirectional integral images,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2006), Vol.  2, pp. II-517–II-520. [CrossRef]
  6. N. P. Sgouros, D. P. Chaikalis, P. G. Papageorgas, and M. S. Sangriotis, “Omnidirectional integral photography images compression using the 3D-DCT,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DTuA2. [PubMed]
  7. A. Aggoun and M. Tabit, “Data compression of integral images for 3D TV,” in IEEE Conference on 3D TV (IEEE, 2007), pp. 1–4.
  8. M. C. Forman, “Compression of integral three-dimensional television pictures,” Ph.D. thesis (De Montfort University, 1999).
  9. M. C. Forman, A. Aggoun, and M. McCormick, “Compression of integral 3D TV pictures,” in Proceedings of the Fifth International Conference on Image Processing and Its Application (IEEE, 1995), pp. 584–588. [CrossRef]
  10. J.-S. Jang, S. Yeom, and B. Javidi, “Compression of ray information in three-dimensional integral imaging,” Opt. Eng. 44, 1–10 (2005). [CrossRef]
  11. H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Compression scheme of sub-images using Karhunen-Loeve transform in three-dimensional integral imaging,” Opt. Commun. 281, 3640–3647 (2008). [CrossRef]
  12. M. Mazri and A. Aggoun, “Compression of 3D integral images using wavelet decomposition,” Proc. SPIE 5150, 1181–1192(2003). [CrossRef]
  13. A. Aggoun and M. Mazri, “Wavelet-based compression algorithm for still omnidirectional 3D integral images,” Signal Image Video Process. 2, 141–153 (2008). [CrossRef]
  14. E. Elharar, A. Stern, O. Hadar, and B. Javidi, “A hybrid compression method for integral images using discrete wavelet transform and discrete cosine transform,” J. Display Technol. 3, 321–325 (2007). [CrossRef]
  15. N. P. Sgouros, A. G. Andreou, M. S. Sangriotis, P. G. Papageorgas, D. M. Maroulis, and N. G. Theofanous, “Compression of IP images for autostereoscopic 3D imaging applications,” in Proceedings of the Third International Symposium on Image and Signal Processing and Analysis, S.Loncaric, A.Neri, and H.Babic, eds. (IEEE, 2003), pp. 223–227. [CrossRef]
  16. S. Yeom, A. Stern, and B. Javidi, “Compression of 3D color integral images,” Opt. Express 12, 1632–1642 (2004). [CrossRef] [PubMed]
  17. N. Sgouros, I. Kontaxakis, and M. Sangriotis, “Effect of different traversal schemes in integral image encoding,” Appl. Opt. 47, D28–D37 (2008). [CrossRef] [PubMed]
  18. R. Olsson, M. Sjostrom, and Y. Xu, “A combined pre-processing and H.264-compression scheme for 3D integral images,” in Proceedings of the IEEE International Conference on Image Processing (IEEE, 2006), pp. 513–516.
  19. S. Adedoyin, W. A. C. Fernando, A. Aggoun, and W. A. R. Weerakkody, “An ES based efficient motion estimation technique for 3D integral video compression,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2007), Vol. 3, pp. III-393–III-396.
  20. R. Olsson, “Empirical rate-distortion analysis of JEPG 2000 3D and H.264/AVC coded integral imaging based 3D-images,” in 3DTV Conference: The True Vision—Capture, Transmission and Display of 3D Video (IEEE, 2008), pp. 113–116. [CrossRef]
  21. D. Chaikalis, N. Sgouros, D. Maroulis, and P. Papageorgas, “Hardware implementation of a disparity estimation scheme for real-time compression in 3D imaging applications,” J. Vis. Commun. Image Rep. 19, 1–11 (2008). [CrossRef]
  22. D. P. Chaikalis, N. P. Sgouros, and D. E. Maroulis, “Real-time processing pipeline for 3D imaging applications,” in Proceedings of the International Conference on Digital Signal Processing (IEEE, 2009), pp. 1–6. [CrossRef]
  23. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009). [CrossRef] [PubMed]
  24. J.-H. Park, S. Jung, H. Choi, Y. Kim, and B. Lee, “Depth extraction by use of a rectangular lens array and one-dimensional elemental image modification,” Appl. Opt. 43, 4882–4895 (2004). [CrossRef] [PubMed]
  25. J.-H. Park, S. Jung, H. Choi, and B. Lee, “A novel depth extraction algorithm incorporating a lens array and a camera by reassembling pixel columns of elemental images,” Proc. SPIE 4929, 49–58 (2002). [CrossRef]
  26. C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth extraction from unidirectional integral image using a modified multi-baseline technique,” Proc. SPIE 4660, 135–143 (2002). [CrossRef]
  27. C. Wu, M. McCormick, A. Aggoun, and S. Y. Kung, “Depth mapping of integral images through viewpoint image extraction with a hybrid disparity analysis algorithm,” J. Display Technol. 4, 101–108 (2008). [CrossRef]
  28. M.-S. Kim, G. Baasantseren, N. Kim, and J.-H. Park, “Hologram generation of 3D objects using multiple orthographic view images,” J. Opt. Soc. Korea 12, 269–274 (2008). [CrossRef]
  29. J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17, 6320–6334 (2009). [CrossRef] [PubMed]
  30. H. Schwarz, D. Marpe, and T. Wiegand, “Analysis of hierarchical B pictures and MCTF,” in Proceedings of the IEEE International Conference on Multimedia and Expo (IEEE, 2006), pp. 1929–1932. [CrossRef]
  31. “Advanced video coding for generic audiovisual services, version 3,” ITU-T Rec. & ISO/IEC 14496-10 AVC (2005).
  32. T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan, “Rate-constrained coder control and comparison of video coding standards,” IEEE Trans. Circuits Syst. Video Technol. 13, 688–703 (2003). [CrossRef]
  33. P. Merkle, A. Smolic, K. Muller, and T. Wiegand, “Efficient prediction structures for multiview video coding,” IEEE Trans. Circuits Syst. Video Technol. 17, 1461–1473(2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited