Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Diffraction-based modeling of high-numerical-aperture in-line lensless holograms

Not Accessible

Your library or personal account may give you access

Abstract

Conventionally, for modeling in-line lensless holograms of systems with high numerical apertures and diverging spherical illumination, the samples are considered as an ensemble of secondary point sources. On following Huygens’s principle, the in-line hologram is the result of the amplitude superposition of the secondary spherical wavefronts with the wavefront originated in the point source. Albeit simple, this approach limits the shapes of the objects that can be modeled and the computation time rises with the complexity of the sample. In this work, we present a diffraction-based approach to model in-line lensless holograms. Samples with any shape or size can be modeled for in-line holographic systems with numerical apertures up to 0.57. The method is successfully applied to model objects of intricate submicrometer structures and/or multiple samples lying within a unique sample volume.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Digital in-line holographic microscopy

Jorge Garcia-Sucerquia, Wenbo Xu, Stephan K. Jericho, Peter Klages, Manfred H. Jericho, and H. Jürgen Kreuzer
Appl. Opt. 45(5) 836-850 (2006)

Magnified reconstruction of digitally recorded holograms by Fresnel–Bluestein transform

John F. Restrepo and Jorge Garcia-Sucerquia
Appl. Opt. 49(33) 6430-6435 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved