OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 12 — Apr. 20, 2011
  • pp: 1745–1752

Diffraction-based modeling of high-numerical-aperture in-line lensless holograms

John F. Restrepo and Jorge Garcia-Sucerquia  »View Author Affiliations


Applied Optics, Vol. 50, Issue 12, pp. 1745-1752 (2011)
http://dx.doi.org/10.1364/AO.50.001745


View Full Text Article

Enhanced HTML    Acrobat PDF (673 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Conventionally, for modeling in-line lensless holograms of systems with high numerical apertures and diverging spherical illumination, the samples are considered as an ensemble of secondary point sources. On following Huygens’s principle, the in-line hologram is the result of the amplitude superposition of the secondary spherical wavefronts with the wavefront originated in the point source. Albeit simple, this approach limits the shapes of the objects that can be modeled and the computation time rises with the complexity of the sample. In this work, we present a diffraction-based approach to model in-line lensless holograms. Samples with any shape or size can be modeled for in-line holographic systems with numerical apertures up to 0.57. The method is successfully applied to model objects of intricate submicrometer structures and/or multiple samples lying within a unique sample volume.

© 2011 OpticalSociety of America

OCIS Codes
(090.1760) Holography : Computer holography
(110.0180) Imaging systems : Microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(260.1960) Physical optics : Diffraction theory
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: October 22, 2010
Revised Manuscript: January 13, 2011
Manuscript Accepted: January 14, 2011
Published: April 14, 2011

Citation
John F. Restrepo and Jorge Garcia-Sucerquia, "Diffraction-based modeling of high-numerical-aperture in-line lensless holograms," Appl. Opt. 50, 1745-1752 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-12-1745


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef] [PubMed]
  2. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001). [CrossRef] [PubMed]
  3. S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial exobiological research,” Planet. Space Sci. 58, 701–705 (2010). [CrossRef]
  4. S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006). [CrossRef]
  5. J. Garcia-Sucerquia, W. Xu, S. M. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluidic flow with digital in-line holographic microscopy,” Optik (Jena) 119, 419–423(2008). [CrossRef]
  6. H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, “Theory of the point source electron microscope,” Ultramicroscopy 45, 381–403 (1992). [CrossRef]
  7. A. Wuttig, M. Kanka, H. J. Kreuzer, and R. Riesenberg, “Packed domain Rayleigh–Sommerfeld wavefield propagation for large targets,” Opt. Express 18, 27036–27047 (2010). [CrossRef]
  8. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  9. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH Verlag, 2005).
  10. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004). [CrossRef] [PubMed]
  11. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. 29, 1668–1670 (2004). [CrossRef] [PubMed]
  12. V. Nascov and P. C. Logofătu, “Fast computation algorithm for the Rayleigh–Sommerfeld diffraction formula using a type of scaled convolution,” Appl. Opt. 48, 4310–4319 (2009). [CrossRef] [PubMed]
  13. X. Zeng, C. Liang, and Y. An, “Far-field radiation of planar Gaussian sources and comparison with solutions based on the parabolic approximation,” Appl. Opt. 36, 2042–2047(1997). [CrossRef] [PubMed]
  14. Y. M. Engelberg and S. Ruschin, “Fast method for physical optics propagation of high-numerical-aperture beams,” J. Opt. Soc. Am. A 21, 2135–2145 (2004). [CrossRef]
  15. L. Bluestein, “Linear filtering approach to the computation of the discrete Fourier transform,” IEEE Trans. Audio Electroacoust. 18, 451–455 (1970). [CrossRef]
  16. H. J. Kreuzer, “Holographic microscope and method of hologram reconstruction,” U.S. patent 6411406 B1 (25 June 2002).
  17. S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006). [CrossRef]
  18. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. A 197, 454–487 (1949). [CrossRef]
  19. M. Born and E. Wolf, Principles of Optics (Pergamon, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited