OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 12 — Apr. 20, 2011
  • pp: 1779–1785

Application of a liquid crystal spatial light modulator to laser marking

Jonathan P. Parry, Rainer J. Beck, Jonathan D. Shephard, and Duncan P. Hand  »View Author Affiliations


Applied Optics, Vol. 50, Issue 12, pp. 1779-1785 (2011)
http://dx.doi.org/10.1364/AO.50.001779


View Full Text Article

Enhanced HTML    Acrobat PDF (684 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser marking is demonstrated using a nanosecond (ns) pulse duration laser in combination with a liquid crystal spatial light modulator to generate two-dimensional patterns directly onto thin films and bulk metal surfaces. Previous demonstrations of laser marking with such devices have been limited to low average power lasers. Application in the ns regime enables more complex, larger scale marks to be generated with more widely available and industrially proven laser systems. The dynamic nature of the device is utilized to improve mark quality by reducing the impact of the inherently speckled intensity distribution across the generated image and reduce thermal effects in the marked surface.

© 2011 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(350.3390) Other areas of optics : Laser materials processing
(350.3850) Other areas of optics : Materials processing
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 19, 2010
Revised Manuscript: March 17, 2011
Manuscript Accepted: March 17, 2011
Published: April 18, 2011

Citation
Jonathan P. Parry, Rainer J. Beck, Jonathan D. Shephard, and Duncan P. Hand, "Application of a liquid crystal spatial light modulator to laser marking," Appl. Opt. 50, 1779-1785 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-12-1779


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008). [CrossRef]
  2. A. Laskin, Beam Shaping? Easy! (Industrial Laser Solutions, 2006), pp. 17–19.
  3. E. Neiss, M. Flury, and J. Fontaine, “Diffractive optical elements for laser marking applications,” Proc. SPIE 7003, 70032L (2008). [CrossRef]
  4. T. Kajava, A. Hakola, H. Elfstrom, J. Simonen, P. Paakkonen, and J. Turunen, “Flat-top profile of an excimer-laser beam generated using beam-splitter gratings,” Opt. Commun. 268, 289–293 (2006). [CrossRef]
  5. T. Lizotte and O. Ohar, “Structured beam shaping for precision laser dicing of multilayered substrates,” Proc. SPIE 6458, 64580X (2007). [CrossRef]
  6. J. Ihlemann and K. Rubahn, “Excimer laser micro machining: fabrication and applications of dielectric masks,” Appl. Surf. Sci. 154, 587–592 (2000). [CrossRef]
  7. S. Campbell, S. M. F. Triphan, R. El-Agmy, A. H. Greenaway, and D. T. Reid, “Direct optimization of femtosecond laser ablation using adaptive wavefront shaping,” J. Opt. A Pure Appl. Opt. 9, 1100–1104 (2007). [CrossRef]
  8. R. J. Beck, R.Carrington, J. P. Parry, W. N. MacPherson, A. Waddie, D. T. Reid, N. Weston, J. D. Shephard, and D. P. Hand, “Adaptive optics for optimization of laser processing,” in Proceedings of LAMP2009—the 5th International Congress on Laser Advanced Materials Processing (2009), paper 09-018.
  9. J. C. Sinquin, J. M. Lurcon, and C. Guillemard, “Deformable mirror technologies for astronomy at CILAS,” Proc. SPIE 7015, 70150O (2008). [CrossRef]
  10. I. Murokh, A. Kerner, and S. Filatov, “Laser marking using a digital micro-mirror device,” U.S. patent 6,836,284 (28 December 2004).
  11. E. T. Ritschdorff and J. B. Shear, “Multiphoton lithography using a high-repetition rate microchip laser,” Anal. Chem. 82, 8733–8737 (2010). [CrossRef] [PubMed]
  12. A. Bertsch, S. Zissi, J. Y. Jezequel, S. Corbel, and J. C. Andre, “Microstereophotolithography using a liquid crystal display as dynamic mask-generator,” Microsyst. Technol. 3, 42–47 (1997). [CrossRef]
  13. V. Laude, “Twisted-nematic liquid-crystal pixelated active lens,” Opt. Commun. 153, 134–152 (1998). [CrossRef]
  14. E. Martin-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A Pure Appl. Opt. 9, S267–S277 (2007). [CrossRef]
  15. K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169–4174(2006). [CrossRef] [PubMed]
  16. P. M. Prieto, E. J. Fernandez, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071(2004). [CrossRef] [PubMed]
  17. M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, “Double waveguide couplers produced by simultaneous femtosecond writing,” Opt. Express 17, 3555–3563 (2009). [CrossRef] [PubMed]
  18. L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express 15, 14488–14497 (2007). [CrossRef] [PubMed]
  19. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255, 6582–6588 (2009). [CrossRef]
  20. A. T. Sandstrom, A.-K.Holmer, U. Lungblad, and D. Hanstorp, “Pattern generation system using a spatial light modulator,” U.S. patent 6,700,095 (2 March 2004).
  21. D. L. Chen, Y. Zhang, A. Feng, Z. Xu, B. Li, and H. Shen, “Investigation of laser marking technology with the image mask of liquid crystal display,” Appl. Mech. Mat. 43, 633–636(2011). [CrossRef]
  22. F. Ghauri, “Method and system for laser-based high-speed digital marking of objects,” U.S. patent application 20100054287 (4 March 2010).
  23. R. J. Beck, J. P. Parry, W. N. MacPherson, A. Waddie, N. J. Weston, J. D. Shephard, and D. P. Hand, “Application of cooled spatial light modulator for high power nanosecond laser micromachining,” Opt. Express 18, 17059–17065 (2010). [CrossRef] [PubMed]
  24. E. Buckley, “Holographic laser projection technology,” in SID Symposium Digest (Society for Information Display, 2008), Vol  Xxxix, Books I–III, pp. 1074–1078. [CrossRef]
  25. J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light-modulator,” Appl. Opt. 34, 3165–3171 (1995). [CrossRef] [PubMed]
  26. L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17, 1330–1339 (2009). [CrossRef] [PubMed]
  27. M. Polin, K. Ladavac, S. H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005). [CrossRef] [PubMed]
  28. D. Palima and V. R. Daria, “Holographic projection of arbitrary light patterns with a suppressed zero-order beam,” Appl. Opt. 46, 4197–4201 (2007). [CrossRef] [PubMed]
  29. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited