OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 13 — May. 1, 2011
  • pp: 1816–1821

Effective random laser action in Rhodamine 6G solution with Al nanoparticles

Liling Yang, Guoying Feng, Jiayu Yi, Ke Yao, Guoliang Deng, and Shouhuan Zhou  »View Author Affiliations

Applied Optics, Vol. 50, Issue 13, pp. 1816-1821 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (623 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have studied the random laser action in Rhodamine 6G (Rh6G) ethylene glycol solution with Al nanoparticles. The experiment results are obtained by pumping with a nanosecond ( 7 ns ) laser pulse, which demonstrated the existence of effective random laser emission. It is found that the threshold of the random laser depends on the concentration of the Rh6G and the concentration of Al nanoparticles. The concentration and diameter of Al nanoparticles have effects on the optical path; a higher concentration or a larger diameter results in a shorter optical path length. Also multimode survival and mode competition have been observed at a relatively high concentration ( 0.08 M ) of Rh6G, where the concentration of Al nanoparticles is 0.0015 M .

© 2011 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(290.4210) Scattering : Multiple scattering

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 7, 2010
Revised Manuscript: March 3, 2011
Manuscript Accepted: March 5, 2011
Published: April 20, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Liling Yang, Guoying Feng, Jiayu Yi, Ke Yao, Guoliang Deng, and Shouhuan Zhou, "Effective random laser action in Rhodamine 6G solution with Al nanoparticles," Appl. Opt. 50, 1816-1821 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” Sov. Phys. JETP 26, 835–840 (1968).
  2. D. S. Wiersma, “The physics and applications of random lasers,” Nature Phys. 4, 359–367 (2008). [CrossRef]
  3. S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, “Comparison of various emissions from the laser dye solution under picosecond laser pulse pumping,” Proc. SPIE 7832, 738235–738237 (2009). [CrossRef]
  4. X. Wu and H. Cao, “Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems,” Phys. Rev. A 77, 013832 (2008). [CrossRef]
  5. C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random laser action in the core of a photonic crystal fiber,” Opt. Photonics News 19(12), 27 (2008). [CrossRef]
  6. C. Bouvy, E. Chelnokov, R. Zhao, W. Marine, R. Sporken, and B.-L. Su, “Random laser action of ZnO@mesoporous silicas,” Nanotechnology 19, 105710 (2008). [CrossRef] [PubMed]
  7. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98, 143902 (2007). [CrossRef] [PubMed]
  8. M. A. Illarramendi, I. Aramburu, J. Fernández, R. Balda, and M. Al-Saleh1, “Transport mean free path in K5Bi1−xNdx(MoO4)4 laser crystal powders,” J. Phys. Condens. Matter 19, 036206(2007). [CrossRef]
  9. B. García-Ramiro, B. Garcia-Ramiro, M. A. Illarramendi, I. Aramburu, J. Fernández, R. Balda, and M. Al-Saleh, “Light propagation in optical crystal powders: effects of particle size and volume filling factor,” J. Phys. Condens. Matter 19, 456213 (2007). [CrossRef]
  10. C. J. S. de Matos, L. de S. Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903(2007). [CrossRef] [PubMed]
  11. C. J. De Matos, C. M. B. Cordeiro, E. M. dos Santos, J. S. Ong, A. Bozolan, and C. H. Brito Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Opt. Express 15, 11207–11212(2007). [CrossRef] [PubMed]
  12. O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89, 191116 (2006). [CrossRef]
  13. Noginov and Mikhail, Solid-State Random Lasers, Springer Series in Optical Sciences (Springer, 2005), p. 105.
  14. R. Polson and Z. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004). [CrossRef]
  15. H. Cao, “Lasing in random media,” Waves Random Media 13, R1 (2003). [CrossRef]
  16. Q. Li, K. M. Ho, and C. M. Soukoulis, “Mode distribution in coherently amplifying random media,” Physica B 296, 78–84(2001). [CrossRef]
  17. R. K. Thareja and A. Mitra, “Random laser action in ZnO,” Appl. Phys. B 71, 181–184 (2000). [CrossRef]
  18. H. Cao, J. Y. Xu, D. Z. Zhang, S. H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000). [CrossRef] [PubMed]
  19. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999). [CrossRef]
  20. R. M. Balachandran, D. P. Pacheco, and N. M. Lawandy, “Laser action in polymeric gain media containing scattering particles,” Appl. Opt. 35, 640–643 (1996). [CrossRef] [PubMed]
  21. M. A. Noginov, N. E. Noginova, H. J. Caulfield, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430–437 (1995). [CrossRef]
  22. T. Zhai, Y. Zhou, S. Chen, Z. Wang, J. Shi, D. Liu, and X. Zhang, “Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles,” Phys. Rev. A 82, 023824 (2010). [CrossRef]
  23. X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006). [CrossRef]
  24. J. Kitur, G. Zhu, M. Bahoura, and M. A. Noginov, “Dependence of the random laser behavior on the concentrations of dye and scatterers,” J. Opt. 12, 024009 (2010). [CrossRef]
  25. K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80, 055803 (2009). [CrossRef]
  26. B. García-Ramiro, I. Aramburu, M. A. Illarramendi, J. Fernández, and R. Balda, “Study of lasing threshold and efficiency in laser crystal powders,” Eur. Phys. J. D 52, 195–198 (2009). [CrossRef]
  27. S. García-Revilla, J. Fernández, M. A. Illarramendi, B. García-Ramiro, R. Balda, H. Cui, M. Zayat, and D. Levy, “Ultrafast random laser emission in a dye-doped silica gel powder,” Opt. Express 16, 12251–12263 (2008). [CrossRef] [PubMed]
  28. K. Totsuka, G. van Soest, T. Ito, A. Lagendijk, and M. Tomita, “Amplification and diffusion of spontaneous emission in strongly scattering medium,” J. Appl. Phys. 87, 7623–7628(2000). [CrossRef]
  29. K. Totsuka and M. Tomita, “Coherent backscattering in a disordered optical medium in the presence of saturation absorption,” Phys. Rev. B 59, 11139–11142(1999). [CrossRef]
  30. K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, “Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media,” Phys. Rev. B 59, 50–53 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited