OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 13 — May. 1, 2011
  • pp: 1822–1826

Modeling and experimental observation of an on-chip two-dimensional far-field interference pattern

Amir Hosseini, David Kwong, Yang Zhang, Andrea Alu, and Ray T. Chen  »View Author Affiliations

Applied Optics, Vol. 50, Issue 13, pp. 1822-1826 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (463 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we model and experimentally observe the far-field radiation produced by interfering beams propagating in two-dimensional (2D) slab waveguides. Using a transmission-line analogy, we compare the 2D propagation with standard three-dimensional (3D) far-field representations and derive the 2D conditions for using standard far-field approximations. Then we test our theoretical results by experimentally observing the 2D far-field pattern produced by a 1 × 3 multimode interference (MMI) coupler on a silicon nanomembrane. The MMI outputs are connected to a slab silicon waveguide, and the far field is observed at the edge of the silicon slab. This represents the observation of 2D far-field pattern produced by an array of on-chip radiators.

© 2011 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: November 2, 2010
Revised Manuscript: February 9, 2011
Manuscript Accepted: February 27, 2011
Published: April 20, 2011

Amir Hosseini, David Kwong, Yang Zhang, Andrea Alu, and Ray T. Chen, "Modeling and experimental observation of an on-chip two-dimensional far-field interference pattern," Appl. Opt. 50, 1822-1826 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “Optical spatial quantization for higher performance analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 56, 2143–2150 (2008). [CrossRef]
  2. R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol. 2, 426–429. (2007). [CrossRef]
  3. A. W. Lohmann, A. Pe’er, D. Wang, and A. A. Friesem, “Flatland optics: fundamentals,” J. Opt. Soc. Am. A 17, 1755–1762 (2000). [CrossRef]
  4. A. W. Lohmann, D. Wang, A. Pe’er, and A. A. Friesem, “Flatland optics. II. basic experiments,” J. Opt. Soc. Am. A 18, 1056–1061 (2001). [CrossRef]
  5. A. W. Lohmann, A. Pe’er, D. Wang, and A. A. Friesem, “Flatland optics. III. Achromatic diffraction,” J. Opt. Soc. Am. A 18, 2095–2097. [CrossRef]
  6. A. Sommerfeld, Partial Differential Equations in Physics(Academic, 1949).
  7. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972).
  8. C. A. Balanis, Advanced Engineering Electromagnetics(Wiley, 1989).
  9. A. Alù and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23, 571–583 (2006). [CrossRef]
  10. A. Hosseini, H. Subbaraman, D. Kwong, Y. Zhang, and R. T. Chen, “Optimum access waveguide width for 1×N multimode interference couplers on silicon nanomembrane,” Opt. Lett. 35, 2864–2866 (2010). [CrossRef] [PubMed]
  11. E. R. Thoen, L. A. Molter, and J. P. Donnelly, “Exact modal analysis and optimization of N×N×1 cascaded waveguide structures with multimode guiding sections,” IEEE J. Quantum Electron. 33, 1299–1307 (1997). [CrossRef]
  12. J. M. Heaton and R. M. Jenkins, “General matrix theory of self-imaging in multimode interference (MMI) couplers,” IEEE Photon. Technol. Lett. 11, 212–214 (1999). [CrossRef]
  13. A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, “Output formulation for symmetrically excited one-to-Nmultimode interference coupler,” IEEE J. Sel. Top. Quant. Electron. 6, 53–60 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited