OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 13 — May. 1, 2011
  • pp: 1843–1849

Polymeric optofluidic Fabry–Perot sensor by direct laser machining and hot embossing

Jing Wu, Daniel Day, and Min Gu  »View Author Affiliations

Applied Optics, Vol. 50, Issue 13, pp. 1843-1849 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (707 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a polymeric-based Fabry–Perot optofluidic sensor fabricated by combining direct laser machining and hot embossing. This technique provides a more elegant solution to conventional hot embossing by increasing the production rate, improving the reproducibility, and further reducing the cost, providing a large working area and flexibility in design modification and customization. As a proof of concept, a Fabry–Perot (F–P) optofluidic sensor was fabricated in polymethyl methacrylate (PMMA) from a micromachined stamp. The experimental results of the sensor agree well with analytical calculations and show a sensitivity of 2.13 × 10 3 RIU / nm for fluid refractive index change.

© 2011 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(130.6010) Integrated optics : Sensors
(220.4610) Optical design and fabrication : Optical fabrication
(230.4000) Optical devices : Microstructure fabrication
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Optical Devices

Original Manuscript: November 19, 2010
Revised Manuscript: March 3, 2011
Manuscript Accepted: March 4, 2011
Published: April 25, 2011

Jing Wu, Daniel Day, and Min Gu, "Polymeric optofluidic Fabry-Perot sensor by direct laser machining and hot embossing," Appl. Opt. 50, 1843-1849 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A, Phys. 83, 130-135 (2000). [CrossRef]
  2. R.-D. Chien, “Micromolding of biochip devices designed with microchannels,” Sens. Actuators A, Phys. 128, 238-247(2006). [CrossRef]
  3. M. B. Esch, S. Kapur, G. Irizarry, and V. Genova, “Influence of master fabrication techniques on the characteristics of embossed microfluidic channels,” Lab Chip 3, 121-127 (2003). [CrossRef]
  4. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424(2003). [CrossRef] [PubMed]
  5. J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196-220 (2004). [CrossRef] [PubMed]
  6. M. Ozkan, M. Wang, C. Ozkan, R. Flynn, and S. Esener, “Optical manipulation of objects and biological cells in microfluidic devices,” Biomed. Microdevices 5, 61-67 (2003). [CrossRef]
  7. E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007). [CrossRef]
  8. H. Mushfique, J. Leach, H. Yin, R. Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237-4240 (2008). [CrossRef] [PubMed]
  9. J. Wu, D. Day, and M. Gu, “Shear stress mapping in microfluidic devices by optical tweezers,” Opt. Express 18, 7611-7616(2010). [CrossRef] [PubMed]
  10. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277-279 (2001). [CrossRef]
  11. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007-2009 (2004). [CrossRef] [PubMed]
  12. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28, 1144-1146 (2003). [CrossRef] [PubMed]
  13. F. He, Y. Cheng, L.-L. Qiao, C. Wang, Z.-Z. Xu, K. Sugioka, and K. Midorikawa, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96, 041108(2010). [CrossRef]
  14. J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92, 071108 (2008). [CrossRef]
  15. OPTIMtrade Glycerine (Dow Chemical Company, 2011), retrieved http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0032/0901b803800322b7.pdf?filepath=glycerine/pdfs/noreg/115-00667.pdf&fromPage=GetDoc.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited