OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 13 — May. 1, 2011
  • pp: 1958–1962

Experimental study on GaP surface damage threshold induced by a high repetition rate femtosecond laser

Yi Li, Feng Liu, Yanfeng Li, Lu Chai, Qirong Xing, Minglie Hu, and Chingyue Wang  »View Author Affiliations


Applied Optics, Vol. 50, Issue 13, pp. 1958-1962 (2011)
http://dx.doi.org/10.1364/AO.50.001958


View Full Text Article

Enhanced HTML    Acrobat PDF (423 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The surface damage threshold of undoped bulk 110 GaP induced by a high repetition rate femtosecond pulse at 1040 nm with a duration of 61 fs was studied. The threshold value was obtained by a linear fit of the incident single pulse fluence and was confirmed with a breakdown test around the threshold level. The result will be useful in high intensity, high repetition rate laser applications and ultrafast processes.

© 2011 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3440) Lasers and laser optics : Laser-induced breakdown
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 11, 2011
Revised Manuscript: March 9, 2011
Manuscript Accepted: March 14, 2011
Published: April 29, 2011

Citation
Yi Li, Feng Liu, Yanfeng Li, Lu Chai, Qirong Xing, Minglie Hu, and Chingyue Wang, "Experimental study on GaP surface damage threshold induced by a high repetition rate femtosecond laser," Appl. Opt. 50, 1958-1962 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-13-1958


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994). [CrossRef]
  2. I. Fuss and D. Smart, “Cryogenic gallium phosphide acousto-optic deflectors,” Appl. Opt. 30, 4526–4527 (1991). [CrossRef] [PubMed]
  3. T. E. Zipperian and L. R. Dawson, “A gallium phosphide high-temperature bipolar junction transistor,” Appl. Phys. Lett. 39, 895–897 (1981). [CrossRef]
  4. D. L. Keune, M. G. Craford, A. H. Herzog, and B. J. Fitzpatrick, “Gallium phosphide high-temperature electroluminescent p-n-p-n switches and controlled rectifiers,” J. Appl. Phys. 43, 3417–3421 (1972). [CrossRef]
  5. K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008). [CrossRef]
  6. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vuckovic, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009). [CrossRef]
  7. G. Chang, C. J. Divin, C. H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier,” Opt. Express 14, 7909–7913 (2006). [CrossRef] [PubMed]
  8. F. Liu, Y. J. Song, Q. R. Xing, M. L. Hu, Y. Li, C. L. Wang, L. Chai, W. L. Zhang, A. M. Zheltikov, and C. Y. Wang, “Broadband terahertz pulse generation by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photon. Technol. Lett. 22, 814–815 (2010). [CrossRef]
  9. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079(1998). [CrossRef]
  10. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437–11450 (2000). [CrossRef]
  11. Z. Duanming, L. Dan, L. Zhihua, H. Sipu, Y. Boming, G. Li, T. Xinyu, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Physica B (Amsterdam) 362, 82–87 (2005). [CrossRef]
  12. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073(1994). [CrossRef]
  13. C.-H. Fan and J. P. Longtin, “Modeling optical breakdown in dielectrics during ultrafast laser processing,” Appl. Opt. 40, 3124–3131 (2001). [CrossRef]
  14. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974). [CrossRef]
  15. A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999). [CrossRef]
  16. A. Okano, R. K. Thoma, G. P. Williams, and R. T. Williams, “Two-photon photoelectron spectroscopy of GaP (110) after sputtering, annealing, and multishot laser damage,” Phys. Rev. B 52, 14789–14795 (1995). [CrossRef]
  17. S. Rychnovsky, G. R. Allan, C. H. Venzke, and T. F. Boggess, “Picosecond measurements of absorptive and refractive optical nonlinearities in GaP at 532 nm,” Opt. Lett. 19, 527–529 (1994). [CrossRef] [PubMed]
  18. K. Kuroda, Y. Okazaki, T. Shimura, H. Okamura, M. Chihara, M. Itoh, and I. Ogura, “Photorefractive effect in GaP,” Opt. Lett. 15, 1197–1199 (1990). [CrossRef] [PubMed]
  19. L. P. Gonzalez, S. Guha, and S. Trivedi, “Damage thresholds and nonlinear optical performance of GaP,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Tech. Dig. (CD) (Optical Society of America, 2004), paper CWA47. [PubMed]
  20. W.-Q. He, C.-M. Gu, and W.-Z. Shen, “Direct evidence of Kerr-like nonlinearity by femtosecond Z-scan technique,” Opt. Express 14, 5476–5483 (2006). [CrossRef] [PubMed]
  21. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005). [CrossRef] [PubMed]
  22. O. Madelung, Semiconductors: Data Handbook (Springer, 2004). [CrossRef]
  23. F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010). [CrossRef]
  24. B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009). [CrossRef]
  25. B. Tan, S. Panchatsharam, and K. Venkatakrishnan, “High repetition rate femtosecond laser forming sub-10 μm diameter interconnection vias,” J. Phys. D 42, 065102 (2009). [CrossRef]
  26. J. Bonse, P. Rudolph, J. Kruger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659–663 (2000). [CrossRef]
  27. A. Borowiec and H. K. Haugen, “Femtosecond laser micromachining of grooves in indium phosphide,” Appl. Phys. A 79, 521–529 (2004). [CrossRef]
  28. H. Lee, “Picosecond mid-IR laser induced surface damage on gallium phosphate (GaP) and Calcium Fluoride (CaF2),” J. Mech. Sci. Technol. 21, 1077–1082 (2007). [CrossRef]
  29. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225(2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited