OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 14 — May. 10, 2011
  • pp: 1974–1978

Chalcogenide glass microlenses by inkjet printing

Eric A. Sanchez, Maike Waldmann, and Craig B. Arnold  »View Author Affiliations

Applied Optics, Vol. 50, Issue 14, pp. 1974-1978 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate micrometer scale mid-IR lenses for integrated optics, using solution-based inkjet printing techniques and subsequent processing. Arsenic sulfide spherical microlenses with diameters of 10 350 μm and focal lengths of 10 700 μm have been fabricated. The baking conditions can be used to tune the precise focal length.

© 2011 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(130.3060) Integrated optics : Infrared
(130.3130) Integrated optics : Integrated optics materials
(160.2750) Materials : Glass and other amorphous materials
(220.4000) Optical design and fabrication : Microstructure fabrication
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Optical Devices

Original Manuscript: January 25, 2011
Manuscript Accepted: February 27, 2011
Published: May 4, 2011

Eric A. Sanchez, Maike Waldmann, and Craig B. Arnold, "Chalcogenide glass microlenses by inkjet printing," Appl. Opt. 50, 1974-1978 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001). [CrossRef]
  2. K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43, 537–544 (2005). [CrossRef]
  3. A. Kosterev and F. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002). [CrossRef]
  4. Z. Yin and X. Tang, “A review of energy bandgap engineering in iii–v semiconductor alloys for mid-infrared laser applications,” Solid-State Electron. 51, 6–15 (2007). [CrossRef]
  5. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. Hutchinson, D. Sivco, J. Baillargeon, A. Cho, and H. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000). [CrossRef]
  6. C. Tsay, E. Mujagic, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18, 15523–15530 (2010). [CrossRef] [PubMed]
  7. V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007). [CrossRef] [PubMed]
  8. L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17, 1947–1962 (2009). [CrossRef] [PubMed]
  9. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003). [CrossRef]
  10. A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).
  11. S. J. Madden, T. Han, D. A. Bulla, and B. Luther-Davies, “Low loss chalcogenide glass waveguides fabricated by thermal nanoimprint lithography,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OMH3.
  12. C. Tsay, F. Toor, C. F. Gmachl, and C. B. Arnold, “Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits,” Opt. Lett. 35, 3324–3326(2010). [CrossRef] [PubMed]
  13. C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express 18, 26744–26753 (2010). [CrossRef] [PubMed]
  14. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748–750 (2004). [CrossRef] [PubMed]
  15. H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270, 974–975 (1995). [CrossRef]
  16. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407–S429 (2006). [CrossRef]
  17. H. Hisakuni and K. Tanaka, “Optical fabrication of microlenses in chalcogenide glasses,” Opt. Lett. 20, 958–960(1995). [CrossRef] [PubMed]
  18. K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C.-L. Chao, “Contactless molding of arrayed chalcogenide glass lenses,” J. Non-Cryst. Solids (to be published).
  19. S. Biehl, R. Danzebrink, P. Oliveira, and M. Aegerter, “Refractive microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182 (1998). [CrossRef]
  20. D. MacFarlane, V. Narayan, J. Tatum, W. Cox, T. Chen, and D. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994). [CrossRef]
  21. E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86, 124101 (2005). [CrossRef]
  22. F.-C. Chen, J.-P. Lu, and W.-K. Huang, “Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays,” IEEE Photon. Technol. Lett. 21, 648–650 (2009). [CrossRef]
  23. Y. S. Yang, D.-H. Youn, S. H. Kim, S. C. Lim, H. S. Shim, S. Y. Kang, and I.-K. You, “Preparation and characteristics of pmma microlens array for a blu application by an inkjet printing method,” Mol. Cryst. Liq. Cryst. 520, 239–244 (2010). [CrossRef]
  24. S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express 18, 5472–5480 (2010). [CrossRef] [PubMed]
  25. G. C. Chern and I. Lauks, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53, 6979–6982 (1982). [CrossRef]
  26. H. Zhao, L. Yu, and Y. Huang, “Investigation of a chemically treated inp(1Â 0Â 0) surface during hydrophilic wafer bonding process,” Mater. Sci. Eng. B 128, 93–97 (2006). [CrossRef]
  27. G. Chern, I. Lauks, and K. Norian, “Spin-coated amorphous chalcogenide films: photoinduced effects,” Thin Solid Films 123, 289–296 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited