OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 14 — May. 10, 2011
  • pp: 2069–2079

Vertical profiles of microphysical particle properties derived from inversion with two-dimensional regularization of multiwavelength Raman lidar data: experiment

Detlef Müller, Alexei Kolgotin, Ina Mattis, Andreas Petzold, and Andreas Stohl  »View Author Affiliations

Applied Optics, Vol. 50, Issue 14, pp. 2069-2079 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1934 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Inversion with two-dimensional (2-D) regularization is a new methodology that can be used for the retrieval of profiles of microphysical properties, e.g., effective radius and complex refractive index of atmospheric particles from complete (or sections) of profiles of optical particle properties. The optical profiles are acquired with multiwavelength Raman lidar. Previous simulations with synthetic data have shown advantages in terms of retrieval accuracy compared to our so-called classical one-dimensional (1-D) regularization, which is a method mostly used in the European Aerosol Research Lidar Network (EARLINET). The 1-D regularization suffers from flaws such as retrieval accuracy, speed, and ability for error analysis. In this contribution, we test for the first time the performance of the new 2-D regularization algorithm on the basis of experimental data. We measured with lidar an aged biomass-burning plume over West/Central Europe. For comparison, we use particle in situ data taken in the smoke plume during research aircraft flights upwind of the lidar. We find good agreement for effective radius and volume, surface-area, and number concentrations. The retrieved complex refractive index on average is lower than what we find from the in situ observations. Accordingly, the single-scattering albedo that we obtain from the inversion is higher than what we obtain from the aircraft data. In view of the difficult measurement situation, i.e., the large spatial and temporal distances between aircraft and lidar measurements, this test of our new inversion methodology is satisfactory.

© 2011 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.3640) Atmospheric and oceanic optics : Lidar
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: August 23, 2010
Revised Manuscript: February 2, 2011
Manuscript Accepted: February 11, 2011
Published: May 9, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Detlef Müller, Alexei Kolgotin, Ina Mattis, Andreas Petzold, and Andreas Stohl, "Vertical profiles of microphysical particle properties derived from inversion with two-dimensional regularization of multiwavelength Raman lidar data: experiment," Appl. Opt. 50, 2069-2079 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Kolgotin and D. Müller, “Theory of inversion with two-dimensional regularization: profiles of microphysical particle properties derived from multiwavelength lidar measurements,” Appl. Opt. 47, 4472–4490 (2008). [CrossRef] [PubMed]
  2. D. Müller, U. Wandinger, D. Althausen, I. Mattis, and A. Ansmann, “Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths,” Appl. Opt. 37, 2260–2263 (1998). [CrossRef]
  3. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999). [CrossRef]
  4. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358–2368 (1999). [CrossRef]
  5. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: experiment,” Appl. Opt. 39, 1879–1892 (2000). [CrossRef]
  6. D. Müller, U. Wandinger, D. Althausen, and M. Fiebig, “Comprehensive particle characterization from three-wavelength Raman-lidar observations,” Appl. Opt. 40, 4863–4869(2001). [CrossRef]
  7. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002). [CrossRef] [PubMed]
  8. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004). [CrossRef] [PubMed]
  9. A. Ansmann and D. Müller, “Lidar and atmospheric aerosol particles,” in “Lidar. Range-Resolved Optical Remote Sensing of the Atmosphere,” C.Weitkamp, ed. (Springer, 2005), pp. 105–141.
  10. C. Böckmann, I. Miranova, D. Müller, L. Scheidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22, 518–528 (2005). [CrossRef]
  11. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292–5303 (2005). [CrossRef] [PubMed]
  12. J. Bösenberg, V. Matthias, A. Amodeo, V. Amoiridi, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlson, A. Chaikovsky, G. Chourdakis, A. Comerón, F. D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, R. Rocadenbosch, J. A. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewsky, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, “EARLINET: a European Aerosol Research Lidar Network to establish an aerosol climatology,” Tech. Rep. No. 348 (Max Planck Institute for Meteorology, Hamburg, Germany, 2003).
  13. J. Bösenberg, R. Hoff, A. Ansmann, D. Müller, J. C. Antuna, D. Whiteman, N. Sugimoto, A. Apituley, M. Hardesty, J. Welton, E. Eloranta, Y. Arshinov, S. Kinne, and V. Freudenthaler, “Plan for the implementation of the GAW Aerosol Lidar Observations Network GALION,,” Tech. Rep. No. 178, WMO/TD-No. 1443 (World Meteorological Organization, Global Atmospheric Watch, Geneva, Switzerland, 2008), http://www.wmo.ch/pages/prog/arep/gaw/gaw-reports.html.
  14. Y. M. Noh, Y. J. Kim, and D. Müller, “Seasonal characteristics of lidar ratios measured with a Raman lidar at Gwangju, Korea, in spring and autumn,” Atmos. Environ. 42, 2208–2224 (2008). [CrossRef]
  15. Y. M. Noh, D. Müller, D. H. Shin, H. Lee, J. S. Jung, K. H. Lee, M. Cribb, Z. Li, and Y. J. Kim, “Optical and microphysical properties of severe haze and smoke aerosol measured by integrated remote sensing techniques in Gwangju, Korea,” Atmos. Environ. 43, 879–888 (2009). [CrossRef]
  16. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high-spectral-resolution lidar for profiling aerosol optical profiles,” Appl. Opt. 47, 6734–6752 (2008). [CrossRef] [PubMed]
  17. A. Petzold, M. Esselborn, B. Weinzierl, G. Ehret, A. Ansmann, D. Müller, D. Donovan, G.-J. van Zadelhoff, S. Berthier, M. Wiegner, J. Gasteiger, R. Buras, B. Mayer, D. Lajas, and T. Wehr, “ICAROHS—inter-comparison of aerosol retrievals and observational requirements for multi-wavelength HSRL systems,” in Proceedings of the ESA Living Planet Symposium 2010 (European Space Agency, 2010), Special Publication SP-686 (CD-ROM).
  18. Solutions of Ill-Posed Problems, A.N.Tikhonov and V.Y.Arsenin, eds. (Wiley, 1977).
  19. Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements, S.Twomey, ed. (Elsevier, 1977).
  20. O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696(2000). [CrossRef]
  21. U. Wandinger and A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41, 511–514 (2002). [CrossRef] [PubMed]
  22. U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002). [CrossRef]
  23. A. Petzold, B. Weinzierl, H. Huntrieser, A. Stohl, E. Real, J. Cozic, M. Fiebig, J. Hendricks, A. Lauer, K. Law, A. Roiger, H. Schlager, and E. Weingartner, “Perturbation of the European free troposphere aerosol by North American forest fire plumes during the ICARTT-ITOP experiment in summer 2004,” Atmos. Chem. Phys. 7, 5105–5127 (2007). [CrossRef]
  24. I. Mattis, A. Ansmann, D. Althausen, V. Jaenisch, U. Wandinger, D. Müller, Y. F. Arshinov, S. M. Bobrovnikov, and I. B. Serikov, “Relative-humidity profiling in the troposphere with a Raman lidar,” Appl. Opt. 41, 6451–6462 (2002). [CrossRef] [PubMed]
  25. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef] [PubMed]
  26. D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, and A. Stohl, “Raman lidar observations of aged Siberian and Canadian forest-fire smoke in the free troposphere over Germany in 2003: microphysical particle characterization,” J. Geophys. Res. 110, D17201 (2005). [CrossRef]
  27. Absorption and Scattering of Light by Small Particles, C.F.Bohren and D.R.Huffman, eds. (Wiley, 1983).
  28. A. Stohl, M. Hittenberger, and G. Wotawa, “Validation of the Lagrangian particle dispersion model FLEXPART against large scale tracer experiment data,” Atmos. Environ. 32, 4245–4264 (1998). [CrossRef]
  29. A. Stohl and D. J. Thomson, “A density correction for Lagrangian particle dispersion models,” Boundary-Layer Meteorol. 90, 155–167 (1999). [CrossRef]
  30. C. Forster, U. Wandinger, G. Wotawa, P. James, I. Mattis, D. Althausen, P. Simmonds, S. O’Doherty, S. G. Jennings, C. Kleefeld, J. Schneider, T. Trickl, S. Kreipl, H. Jäger, and A. Stohl, “Transport of boreal forest fire emissions from Canada to Europe,” J. Geophys. Res. 106, 22887–22906 (2001). [CrossRef]
  31. I. Mattis, A. Ansmann, U. Wandinger, and D. Müller, “Unexpectedly high aerosol load in the free troposphere over central Europe in spring/summer 2003,” Geophys. Res. Lett. 30, 2178 (2003). [CrossRef]
  32. T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekigushi, and T. Tsukamato, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31, L23103 (2004). [CrossRef]
  33. D. Müller, I. Mattis, A. Ansmann, U. Wandinger, C. Ritter, and D. Kaiser, “Multiwavelength Raman lidar observations of particle growth during long-range transport of forest-fire smoke in the free troposphere,” Geophys. Res. Lett. 34, L05803(2007). [CrossRef]
  34. B. Weinzierl, “Radiatively-driven processes in forest fire and desert dust plumes,” Ph.D. dissertation (Ludwig-Maximilians-Universität München, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited