OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 14 — May. 10, 2011
  • pp: 2098–2111

Atmospheric CO 2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection

Gary D. Spiers, Robert T. Menzies, Joseph Jacob, Lance E. Christensen, Mark W. Phillips, Yonghoon Choi, and Edward V. Browell  »View Author Affiliations


Applied Optics, Vol. 50, Issue 14, pp. 2098-2111 (2011)
http://dx.doi.org/10.1364/AO.50.002098


View Full Text Article

Enhanced HTML    Acrobat PDF (1389 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report airborne measurements of CO 2 column abundance conducted during two 2009 campaigns using a 2.05 μm laser absorption spectrometer. The two flight campaigns took place in the California Mojave desert and in Oklahoma. The integrated path differential absorption (IPDA) method is used for the CO 2 column mixing ratio retrievals. This instrument and the data analysis methodology provide insight into the capabilities of the IPDA method for both airborne measurements and future global-scale CO 2 measurements from low Earth orbit pertinent to the NASA Active Sensing of CO 2 Emissions over Nights, Days, and Seasons mission. The use of a favorable absorption line in the CO 2 2 μm band allows the on-line frequency to be displaced two (surface pressure) half-widths from line center, providing high sensitivity to the lower tropospheric CO 2 . The measurement repeatability and measurement precision are in good agreement with predicted estimates. We also report comparisons with airborne in situ measurements conducted during the Oklahoma campaign.

© 2011 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.3640) Atmospheric and oceanic optics : Lidar
(280.3420) Remote sensing and sensors : Laser sensors
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 19, 2011
Manuscript Accepted: February 10, 2011
Published: May 9, 2011

Citation
Gary D. Spiers, Robert T. Menzies, Joseph Jacob, Lance E. Christensen, Mark W. Phillips, Yonghoon Choi, and Edward V. Browell, "Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection," Appl. Opt. 50, 2098-2111 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-14-2098


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Rayner and D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001). [CrossRef]
  2. C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112D10314, doi: 10.1029/2006JD007659 (2007). [CrossRef]
  3. “A-SCOPE—Advanced Space Carbon and Climate Observation of Planet Earth, report for assessment,” ESA-SP1313/1 (European Space Agency, 2008), http://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdf.
  4. R. T. Menzies and M. T. Chahine, “Remote sensing with an airborne laser absorption spectrometer,” Appl. Opt. 13, 2840–2849 (1974). [CrossRef] [PubMed]
  5. G. B. Jacobs and L. R. Snowman, “Laser techniques for air pollution measurement,” IEEE J. Quantum Electron. 3, 603–605 (1967). [CrossRef]
  6. R. T. Menzies, “Remote sensing with infrared heterodyne radiometers,” Opto-electronics 4, 179–186 (1972). [CrossRef]
  7. E. E. Remsberg and L. L. Gordley, “Analysis of differential absorption lidar from the space shuttle,” Appl. Opt. 17, 624–630 (1978). [CrossRef] [PubMed]
  8. G. Mégie and R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980). [CrossRef] [PubMed]
  9. D. Bruneau, F. Gibert, P. H. Flamant, and J. Pelon, “Complementary study of differential absorption lidar optimization in direct and heterodyne detections,” Appl. Opt. 45, 4898–4908(2006). [CrossRef] [PubMed]
  10. R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569–6577 (2003). [CrossRef] [PubMed]
  11. G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47, 944–956 (2008). [CrossRef] [PubMed]
  12. F. Gibert, P. H. Flamant, J. Cuesta, and D. Bruneau, “Vertical 2 μm heterodyne differential absorption lidar measurements of mean CO2 mixing ratio in the troposphere,” J. Atmos. Ocean. Technol. 25, 1477–1497 (2008). [CrossRef]
  13. L. Regalia-Jarlot, V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: a comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 101, 325–338 (2006). [CrossRef]
  14. R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Line strengths of C12O216: 4550–7000 cm−1,” J. Mol. Spectrosc. 239, 221–242 (2006). [CrossRef]
  15. L. Joly, F. Marnas, F. Gibert, D. Bruneau, B. Grouiez, P. H. Flamant, G. Durry, N. Dumelie, B. Parvitte, and V. Zeninari, “Laser diode absorption spectroscopy for accurate CO2 line parameters at 2 μm: consequences for space-based DIAL measurements and potential biases,” Appl. Opt. 48, 5475–5483(2009). [CrossRef] [PubMed]
  16. R. A. Toth, C. E. Miller, V. M. Devi, D. C. Benner, and L. R. Brown, “Air-broadened halfwidth and pressure shift coefficients of C12O216 bands: 4750–7000 cm−1,” J. Mol. Spectrosc. 246, 133–157 (2007). [CrossRef]
  17. J.-M. Hartmann, H. Tran, and G. C. Toon, “Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 μm regions,” Atmos. Chem. Phys. 9, 7303–7312 (2009). [CrossRef]
  18. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008). [CrossRef]
  19. J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Appl. Opt. 48, 5413–5422 (2009). [CrossRef] [PubMed]
  20. G. D. Spiers, R. T. Menzies, D. M. Tratt, and M. Phillips, “The laser absorption spectrometer for carbon dioxide sink and source detection,” in Proceedings of the Second Annual Earth Science Technology Conference (National Aeronautics and Space Administration Earth Science Technology Office, 2002), paper PS1P4.
  21. Picarro, Inc., 480 Oakmead Parkway, Sunnyvale, CA 94085, USA.
  22. A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, “Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2,” Atmos. Meas. Tech. Discuss. 2, 1487–1536 (2009). [CrossRef]
  23. G. C. Toon, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (personal communication, 2009).
  24. F. Niro, K. Jucks, and J.-M. Hartmann, “Spectra calculations in central and wing regions of CO2 IR bands. IV: Software and database for the computation of atmospheric spectra,” J. Quant. Spectrosc. Radiat. Transfer 95, 469–481 (2005). [CrossRef]
  25. F. B. Gallion and G. DeBarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” IEEE J. Quantum Electron. QE-20, 343–349 (1984). [CrossRef]
  26. L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070–2074 (1986). [CrossRef]
  27. M. P. Van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992). [CrossRef]
  28. M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalik, and C. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998). [CrossRef]
  29. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J.C.Dainty, ed., Vol.  9 of Topics in Applied Physics (Springer-Verlag, 1975), Chap. 2. [CrossRef]
  30. M. Elbaum and M. C. Teich, “Heterodyne detection of random Gaussian signals in the optical and infrared: optimization of pulse duration,” Opt. Commun. 27, 257–261 (1978). [CrossRef]
  31. B. J. Rye and R. M. Hardesty, “Estimate optimization parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 36, 9425–9436 (1997). [CrossRef]
  32. Y. Zhao, M. J. Post, and R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 2: Applications,” Appl. Opt. 29, 4120–4132 (1990). [CrossRef] [PubMed]
  33. S. A. Vay, J-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108 (2003). [CrossRef]
  34. Y. Choi, S. Vay, K. Vadevu, A. Soja, J. Woo, S. Nolf, and G. Sachse, “Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA,” J. Geophys. Res. 113, D07301 (2008). [CrossRef]
  35. J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, Z. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus B 62770–783, doi: 10.1111/j.1600-0889.2010.00502.x (2010). [CrossRef]
  36. E. V. Browell, J. Dobler, S. Kooi, Y. Choi, F. Harrison, B. Moore, and T. Zaccheo, “Airborne validation of active CO2 LAS measurements,” EOS 90, A34C-04 (2009), Fall Meeting Supplement, abstract.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited