OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 15 — May. 20, 2011
  • pp: 2263–2273

Laser vibrometry from a moving ground vehicle

Leaf A. Jiang, Marius A. Albota, Robert W. Haupt, Justin G. Chen, and Richard M. Marino  »View Author Affiliations


Applied Optics, Vol. 50, Issue 15, pp. 2263-2273 (2011)
http://dx.doi.org/10.1364/AO.50.002263


View Full Text Article

Acrobat PDF (1152 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated the fundamental limits to the performance of a laser vibrometer that is mounted on a moving ground vehicle. The noise floor of a moving laser vibrometer consists of speckle noise, shot noise, and platform vibrations. We showed that speckle noise can be reduced by increasing the laser spot size and that the noise floor is dominated by shot noise at high frequencies (typically greater than a few kilohertz for our system). We built a five-channel, vehicle-mounted, 1.55 μm wavelength laser vibrometer to measure its noise floor at 10 m horizontal range while driving on dirt roads. The measured noise floor agreed with our theoretical estimates. We showed that, by subtracting the response of an accelerometer and an optical reference channel, we could reduce the excess noise (in units of micrometers per second per Hz1/2) from vehicle vibrations by a factor of up to 33, to obtain nearly speckle-and-shot-noise-limited performance from 0.3 to 47 kHz.

© 2011 Optical Society of America

OCIS Codes
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3420) Remote sensing and sensors : Laser sensors
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: November 19, 2010
Revised Manuscript: February 4, 2011
Manuscript Accepted: February 7, 2011
Published: May 18, 2011

Citation
Leaf A. Jiang, Marius A. Albota, Robert W. Haupt, Justin G. Chen, and Richard M. Marino, "Laser vibrometry from a moving ground vehicle," Appl. Opt. 50, 2263-2273 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-15-2263


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. OYO Geospace Corporation, 7007 Pinemont Drive, Houston, Texas 77040, USA.
  2. PCB Piezotronics, Inc., 3425 Walden Avenue, Depew, New York 14043-2495, USA.
  3. Applied Technology Associates, 1300 Britt Street SE, Albuquerque, NM 87123, USA.
  4. R. Haupt and K. Rolt, “Acoustic detection of hidden objects and material discontinuities,” U.S. patent 7,694,567 (13 April 2010).
  5. H. H. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration,” NDT&E Int. 38, 213–218(2005). [CrossRef]
  6. J. R. Bell and S. J. Rothberg, “Rotational vibration measurements using laser Doppler vibrometry: comprehensive theory and practical application,” J. Sound Vib. 238, 673–690(2000). [CrossRef]
  7. J. Sabatier and G. Matalkah, “A study on the passive detection of clandestine tunnels,” in 2008 IEEE Conference on Technologies for Homeland Security, (IEEE, 2008), pp. 353–358.
  8. A. L. Kachelmyer and K. I. Schultz, “Laser vibration sensing,” Linc. Lab. J. 8, 3–28 (1995).
  9. R. Haupt and K. D. Rolt, “Stand-off acoustic-laser technique to locate buried landmines,” Linc. Lab. J. 15, 3–22 (2005).
  10. J. M. Sabatier and N. Xiang, “Laser-Doppler-based acoustic-to-seismic detection of buried mines,” Proc. SPIE 3710, 215–222 (1999). [CrossRef]
  11. J. M. Sabatier and N. Xiang, “An investigation of acoustic-to-seismic coupling to detect buried antitank landmines,” IEEE Trans. Geosci. Remote Sens. 39, 1146–1154 (2001). [CrossRef]
  12. N. Xiang and J. M. Sabatier, “An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling,” J. Acoust. Soc. Am. 113, 1333–1341 (2003). [CrossRef]
  13. B. Libbey, D. Fenneman, and B. Burns, “Mobile platform for acoustic mine detection applications,” Proc. SPIE 5794, 683–693 (2005). [CrossRef]
  14. Polytec Laser Vibrometers, 25 South Street, Suite A, Hopkinton, Massachusetts 01748, USA.
  15. MetroLaser, 8 Chrysler, Irvine, California 92618, USA.
  16. T. Writer, J. M. Sabatier, M. A. Miller, and K. D. Sherbondy, “Mine detection with a forward-moving portable laser Doppler vibrometer,” Proc. SPIE 4742, 649–653 (2002). [CrossRef]
  17. J. M. Sabatier, “Increased ground vibration measurement speed for landmine detection,” Tech. Rep. ADA514444(University of Mississippi, 2009).
  18. R. D. Burgett, M. R. Bradley, M. Duncan, J. Melton, A. K. Lal, V. Aranchuk, C. F. Hess, J. M. Sabatier, and N. Xiang, “Mobile mounted laser Doppler vibrometer array for acoustic landmine detection,” Proc. SPIE 5089, 665–672 (2003). [CrossRef]
  19. D. N. Barr, C. S. Fox, and J. E. Nettleton, “Stabilized reference surface for laser vibration sensors,” U.S. patent 4,777,825(18 October 1988).
  20. H. Kim, Y. Lee, C. Kim, T.-G. Chang, and M.-S. Kang, “Laser Doppler vibrometer with body vibration compensation,” Opt. Eng. 42, 2291–2295 (2003). [CrossRef]
  21. C. N. Shen, B. Waeber, L. Girata, and A. R. Lovett, “Project Radiant Outlaw,” Proc. SPIE 2272, 63–74 (1994). [CrossRef]
  22. H. Nguyen, M. Vai, A. Heckerling, M. Eskowitz, F. Ennis, T. Anderson, L. Retherford, and G. Lambert, “Rapid—a rapid prototyping methodology for embedded systems,” presented at the High Performance Embedded Computing Workshop, Lexington, Massachusetts, USA, 22–23 September 2009.
  23. H. Nguyen and M. Vai, “Rapid prototyping technology,” Linc. Lab. J. 18, 17–27 (2010).
  24. F. M. Gardner, Phaselock Techniques (Wiley, 1979).
  25. V. Aranchuk, A. Lal, C. Hess, and J. M. Sabatier, “Multi-beam laser Doppler vibrometer for landmine detection,” Opt. Eng. 45, 104302 (2006). [CrossRef]
  26. P. Gatt, S. W. Henderson, J. A. L. Thomson, and D. L. Bruns, “Micro-Doppler lidar signals and noise mechanisms: theory and experiment,” Proc. SPIE 4035, 422–435 (2000). [CrossRef]
  27. D. Letalick, I. Renhorn, O. Steinvall, and J. H. Shapiro, “Noise sources in laser radar systems,” Appl. Opt. 28, 2657–2665 (1989). [CrossRef]
  28. J. Totems, V. Jolivet, J.-P. Ovarlez, and N. Martin, “Advanced signal processing methods for pulsed laser vibrometry,” Appl. Opt. 49, 3967–3979 (2010). [CrossRef]
  29. K. D. Ridley and E. Jakeman, “Signal-to-noise analysis of FM demodulation in the presence of multiplicative and additive noise,” Signal Process. 80, 1895–1907 (2000). [CrossRef]
  30. R. L. Lucke and L. J. Rickard, “Photon-limited synthetic-aperture imaging for planet surface studies,” Appl. Opt. 41, 5084–5095 (2002). [CrossRef]
  31. J. W. Goodman, Statistical Optics (Wiley, 1985).
  32. J. H. Shapiro, “Correlation scales of laser speckle in heterodyne detection,” Appl. Opt. 24, 1883–1888 (1985). [CrossRef]
  33. C. A. Hill, M. Harris, K. D. Ridley, E. Jakeman, and P. Lutzmann, “Lidar frequency modulation vibrometry in the presence of speckle,” Appl. Opt. 42, 1091–1100 (2003). [CrossRef]
  34. A. Dräbenstedt, “Quantification of displacement and velocity noise in vibrometer measurements on transversely moving or rotating surfaces,” Proc. SPIE 6616, 661632 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited