OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 15 — May. 20, 2011
  • pp: 2299–2304

Electro-optical logic application of multimode interference coupler by multivalued controlling

Haifeng Zhou, Wanjun Wang, Jianyi Yang, Minghua Wang, and Xiaoqing Jiang  »View Author Affiliations

Applied Optics, Vol. 50, Issue 15, pp. 2299-2304 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (461 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electro-optical hybrid logic is a potential solution to implement both electrical and optical signal processing, which receives analog or digital, electrical or optical signals and produces logic signals in a desired manner. In light of the transfer matrix theory, we found that one can steer light into different output ports of a multimode interference coupler by controlling the phases in a multivalued manner on the image-extended arms. This implementation acts as an analog-to-digital convertor from electric domain to optical domain. Also, an electrical-to-optical 2-to- 2 2 binary-coded decoder is described and examined by the 3D beam propagation method.

© 2011 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.0250) Optical devices : Optoelectronics
(230.2090) Optical devices : Electro-optical devices
(250.6715) Optoelectronics : Switching
(230.3750) Optical devices : Optical logic devices

ToC Category:
Integrated Optics

Original Manuscript: December 8, 2010
Manuscript Accepted: February 18, 2011
Published: May 18, 2011

Haifeng Zhou, Wanjun Wang, Jianyi Yang, Minghua Wang, and Xiaoqing Jiang, "Electro-optical logic application of multimode interference coupler by multivalued controlling," Appl. Opt. 50, 2299-2304 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. H. Hartman, “Photonic systems interconnections—overcoming the high speed electronics bottleneck,” Microelectron. Int. 5, 12–18 (1988). [CrossRef]
  2. M. Lipson, “Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges,” Nanotechnology 15, S622–S627(2004). [CrossRef]
  3. Z. Zalevsky and A. Rudnitsky, “Nano photonic and ultra fast all-optical processing modules,” Opt. Express 13, 10272–10284 (2005). [CrossRef] [PubMed]
  4. R. S. Tucker, “The roles of optics in computing,” Nat. Photon. 4, 405 (2010). [CrossRef]
  5. H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photonics Nanostruct. Fundam. Appl. 5, 14–20 (2007). [CrossRef]
  6. E. S. Rao, M. Satyam, and K. L.Kishore, “Universal electro-optical hybrid logic gates,” Semicond. Phys. Quantum Electron. Optoelectron. 11, 96–100 (2008).
  7. L. W. Cahill and T. T. Le, “The design of signal processing devices employing SOI MMI couplers,” Proc. SPIE 7220, 7220031 (2009). [CrossRef]
  8. C. H. Sarantos and N. Dagli, “A photonic analog-to-digital converter based on an unbalanced Mach–Zehnder quantizer,” Opt. Express 18, 14598–14603 (2010). [CrossRef] [PubMed]
  9. H. F. Zhou, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Steering light into logic patterns with two-dimensional cascaded multimode waveguide,” Chin. Phys. 16, 740–745 (2007). [CrossRef]
  10. Z. Chen, Z. Li, and B. Li, “A 2-to-4 decoder switch in SiGe/Si multimode interference,” Opt. Express 14, 2671–2678 (2006). [CrossRef] [PubMed]
  11. G. Cincotti, N. Wada, and K.-I. Kitayama, “Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers-part i: modeling and design,” J. Lightwave Technol. 24, 103–112 (2006). [CrossRef]
  12. S.-Y. Cho, S.-W. Seo, M. A. Brooke, and N. M. Jokerst, “Integrated detectors for embedded optical interconnections on electrical boards, modules, and integrated circuits,” IEEE J. Quantum Electron. 8, 1427–1434 (2002). [CrossRef]
  13. M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N×N multi-mode interference couplers including phase relations,” Appl. Opt. 33, 3905–3911 (1994). [CrossRef] [PubMed]
  14. M. R. Paiam and R. I. MacDonald, “Design of phased-array wavelength division multiplexers using multimode interference couplers,” Appl. Opt. 36, 5097–5108 (1997). [CrossRef] [PubMed]
  15. L. W. Cahill and F. P. Frank, “Generalized Mach–Zehnder optical switches, WDM and photonic switching devices for network applications,” Proc. SPIE 4289, 113–117 (2001). [CrossRef]
  16. R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, “Novel 1×N and N×Nintegrated optical switches sing self-imaging multimode GaAs/AlGaAs waveguides,” Appl. Phys. Lett. 64, 684–686 (1994). [CrossRef]
  17. Z. Jin, C. J. Kaalund, and G. D. Peng, “Novel approach to design high-performance large-port-count switches in low-index-contrast materials based on cascaded multimode interference couplers,” IEEE J. Quantum Electron. 41, 1548–1551(2005). [CrossRef]
  18. H. F. Zhou, Y. Zhao, W. J. Wang, J. Y. Yang, M. H. Wang, and X. Q. Jiang, “Performance influence of carrier absorption to the Mach–Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009). [CrossRef] [PubMed]
  19. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1×N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express 13, 10109–10114 (2005). [CrossRef] [PubMed]
  20. J. F. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16, 15304–15311(2008). [CrossRef] [PubMed]
  21. J. B. Kuo and S. C. Lin, Low-Voltage SOI CMOS VLSI Devices and Circuits (Wiley, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited