OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 16 — Jun. 1, 2011
  • pp: 2361–2369

Half-data-page insertion method for increasing recording density in angular multiplexing holographic memory

Nobuhiro Kinoshita, Tetsuhiko Muroi, Norihiko Ishii, Koji Kamijo, Hiroshi Kikuchi, Naoki Shimidzu, and Osamu Matoba  »View Author Affiliations


Applied Optics, Vol. 50, Issue 16, pp. 2361-2369 (2011)
http://dx.doi.org/10.1364/AO.50.002361


View Full Text Article

Enhanced HTML    Acrobat PDF (1368 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a method to use a half-size data page between two full-size data pages to increase the recording density in angular multiplexing holographic memory up to 1.5 × as much as the conventional angular multiplexing sequence. In our recording sequence, the full- and half-size data pages are alternately multiplexed. This is because each plane wave from various points in a data page has different angular selectivity. A half-size data page has higher angular selectivity than a full-size data page. The required angular intervals were estimated by numerical simulation taking holographic medium tilt into account. Also, an angular multiplexing experiment using the half-data-page insertion method resulted in a low bit error rate of the order of 10 3 , which is sufficient for practical use.

© 2011 Optical Society of America

OCIS Codes
(090.4220) Holography : Multiplex holography
(210.2860) Optical data storage : Holographic and volume memories

ToC Category:
Optical Data Storage

History
Original Manuscript: September 16, 2010
Revised Manuscript: February 14, 2011
Manuscript Accepted: February 15, 2011
Published: May 23, 2011

Citation
Nobuhiro Kinoshita, Tetsuhiko Muroi, Norihiko Ishii, Koji Kamijo, Hiroshi Kikuchi, Naoki Shimidzu, and Osamu Matoba, "Half-data-page insertion method for increasing recording density in angular multiplexing holographic memory," Appl. Opt. 50, 2361-2369 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-16-2361


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993). [CrossRef] [PubMed]
  2. M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Three-dimensional shift selectivity in reflection-type holographic disk memory with speckle shift recording,” Appl. Opt. 46, 1460–1466 (2007). [CrossRef] [PubMed]
  3. G. A. Rakuljic, V. Levya, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992). [CrossRef] [PubMed]
  4. C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998). [CrossRef]
  5. N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Control of angular intervals for angle-multiplexed holographic memory,” Jpn. J. Appl. Phys. 48, 03A029(2009). [CrossRef]
  6. K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage: from Theory to Practical Systems (Wiley, 2010). [CrossRef]
  7. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004). [CrossRef]
  8. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  9. S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252(2006). [CrossRef]
  10. M. Miura, K. Nitta, and O. Matoba, “Numerical estimation of storage capacity in reflection-type holographic disk memory with three-dimensional speckle-shift multiplexing,” J. Opt. Soc. Am. A 26, 2269–2274 (2009). [CrossRef]
  11. Y. Yonetani, K. Nitta, and O. Matoba, “Numerical evaluation of angular multiplexing in reflection-type holographic data storage in photopolymer with shrinkage,” Appl. Opt. 49, 694–700 (2010). [CrossRef] [PubMed]
  12. M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Image-based numerical evaluation techniques in volume holographic memory systems,” J. Opt. Soc. Am. B 24, 792–798(2007). [CrossRef]
  13. K. Matsushima, “Formulation of the rotational transformation of wave fields and their application to digital holography,” Appl. Opt. 47, D110–D116 (2008). [CrossRef] [PubMed]
  14. N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Classification and evaluation of noises in holographic memory system,” Jpn. J. Appl. Phys. 49, 08KD12(2010). [CrossRef]
  15. T. Ando, K. Masaki, and T. Shimizu, “Holographic read-only memory fabricated by deposition of reflector after writing process with aromatic photopolymer recording layer,” Jpn. J. Appl. Phys. 49, 08KD02 (2010). [CrossRef]
  16. M. R. Ayres, A. Hoskins, P. C. Smith, and J. Kane, “Wobble alignment for angularly multiplexed holograms,” in Technical Digest of the Joint International Symposium on Optical Memory and Optical Data Storage (SPIE, 2008), pp. 460–462.
  17. H. Pishro-Nik, N. Rahnavard, J. Ha, F. Fekri, and A. Adibi, “Low-density parity-check codes for volume holographic memory systems,” Appl. Opt. 42, 861–870 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited