OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 16 — Jun. 1, 2011
  • pp: 2383–2390

Maskless fabrication of three-dimensional microstructures with high isotropic resolution: practical and theoretical considerations

Jun-Gyu Hur  »View Author Affiliations

Applied Optics, Vol. 50, Issue 16, pp. 2383-2390 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (944 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A maskless three-dimensional (3D) microfabrication method based on a digital micromirror device (DMD) is proposed for high lateral and vertical resolution. A substrate is scanned laterally under virtual masks of the DMD. The masks are allocated to a large number of virtual slices, all of which are projected in a single scan of the stage. A theoretical model for the cumulative dose distribution in a photoresist is derived and used to predict the resulting 3D profile. Experiments showed that the proposed method is promising for avoiding the stair-step problem and preventing misalignment errors.

© 2011 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices
(230.4000) Optical devices : Microstructure fabrication
(050.6875) Diffraction and gratings : Three-dimensional fabrication
(110.6895) Imaging systems : Three-dimensional lithography
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: January 4, 2011
Revised Manuscript: March 16, 2011
Manuscript Accepted: March 21, 2011
Published: May 24, 2011

Jun-Gyu Hur, "Maskless fabrication of three-dimensional microstructures with high isotropic resolution: practical and theoretical considerations," Appl. Opt. 50, 2383-2390 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. B. Stern, M. Holz, S. Medeiros, and R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. 9, 3117–3121 (1991). [CrossRef]
  2. T. J. Suleski and D. C. O’Shea, “Gray-scale mask for diffractive-optics fabrication: I. Commercial slide imagers,” Appl. Opt. 34, 7507–7517 (1995). [CrossRef] [PubMed]
  3. A. H. O. Kärkkäinen, J. M. Tamkin, J. D. Rogers, D. R. Neal, O. E. Hormi, G. E. Jabbour, J. T. Rantala, and M. R. Descour, “Direct photolithographic deforming of organomodified siloxane films for micro-optics fabrication,” Appl. Opt. 41, 3988–3998 (2002). [CrossRef] [PubMed]
  4. C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13, 170–177 (2003). [CrossRef]
  5. Z. Zhou and S. H. Lee, “Fabrication of an improved gray-scale mask for refractive micro- and meso-optics,” Opt. Lett. 29, 457–458 (2004). [CrossRef] [PubMed]
  6. J. C. Galas, B. Belier, A. Aassime, J. Palomo, D. Bouville, and J. Aubert, “Fabrication of three-dimensional microstructures using standard ultraviolet and electron-beam lithography,” J. Vac. Sci. Technol. 22, 1160–1162 (2004). [CrossRef]
  7. M. Kurihara, M. Abe, K. Suzuki, K. Yoshida, T. Shimomura, M. Hoga, H. Mohri, and N. Hayashi, “3D structural templates for UV-NIL fabricated with gray-scale lithography,” Microelec. Eng. 84, 999–1002 (2007). [CrossRef]
  8. C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators. A Phys. 121, 113–120 (2005). [CrossRef]
  9. Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. Part A 77, 396–405 (2006). [CrossRef]
  10. J. W. Choi, R. B. Wicker, S. H. Cho, C. S. Ha, and S. H. Lee, “Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography,” Rapid Prototyping J. 15, 59–70 (2009). [CrossRef]
  11. K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators. A Phys. 130–131, 387–392(2006). [CrossRef]
  12. K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlith. Microfab. Microsyst. 2, 331–339 (2003). [CrossRef]
  13. H. Shirota and A. Kuwabara, “Pattern writing apparatus and pattern writing method,” U.S. patent 6,903,798 B2 (7 June 2005).
  14. U. B. Ljungblad, P. Askebjer, T. Karlin, T. Sandstrom, and H. Sjoeberg, “A high-end mask writer using a spatial light modulator,” Proc. SPIE 5721, 43–52 (2005). [CrossRef]
  15. T. Okuyama and H. Washiyama, “Multi-exposure drawing method and apparatus therefor,” U.S. patent 7,136,087(14 November 2006).
  16. D.-H. Lee, “Optical system with 4 μm resolution for maskless lithography using digital micromirror device,” J. Opt. Soc. Korea 14, 266–276 (2010). [CrossRef]
  17. J. R. Sheats and B. W. Smith, Microlithography Science and Technology (Dekker, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited