OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 16 — Jun. 1, 2011
  • pp: 2408–2412

Measuring the dispersive properties of liquids using a microinterferometer

Alvaro Casas Bedoya, Christelle Monat, Peter Domachuk, Christian Grillet, and Benjamin J. Eggleton  »View Author Affiliations

Applied Optics, Vol. 50, Issue 16, pp. 2408-2412 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (441 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a single-beam, compact interferometer, we measure the refractive index of liquids in the near IR. This highly compact device relies on a silica capillary with a 50 μm inner diameter: it uses a minimal volume of test liquid, isolates the liquid from the humid atmosphere, has broadband operation, and is inherently mechanically stable. These characteristics, in combination with straightforward data acquisition, make it particularly well-suited for measuring the optical properties in the near IR of a wide range of liquids. Using this refractometer, we measure the refractive index of high-index liquids that are expected to be hydroscopic. The accuracy of the refractometer ( ± 0.1 % ) is demonstrated through measuring the indices of air and pure water. We show that the hydroscopic behavior of the probed liquids has little influence on their optical properties in the near IR.

© 2011 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(130.6010) Integrated optics : Sensors
(300.1030) Spectroscopy : Absorption

ToC Category:
Integrated Optics

Original Manuscript: January 18, 2011
Revised Manuscript: March 23, 2011
Manuscript Accepted: April 4, 2011
Published: May 25, 2011

Alvaro Casas Bedoya, Christelle Monat, Peter Domachuk, Christian Grillet, and Benjamin J. Eggleton, "Measuring the dispersive properties of liquids using a microinterferometer," Appl. Opt. 50, 2408-2412 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008). [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81–95 (2007). [CrossRef]
  3. W. Liu, L. Cheng, Y. Zhang, H. Wang, and M. Yu, “The physical properties of aqueous solution of room-temperature ionic liquids based on imidazolium: database and evaluation,” J. Mol. Liq. 140, 68–72 (2008). [CrossRef]
  4. Q. Shi and B. T. Kuhlmey, “Optimization of photonic bandgap fiber long-period grating refractive-index sensors,” Opt. Commun. 282, 4723–4728 (2009). [CrossRef]
  5. L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Limb, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10, 1072–1078 (2010). [CrossRef] [PubMed]
  6. K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron. 24, 2528–2533 (2009). [CrossRef] [PubMed]
  7. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615(2007). [CrossRef] [PubMed]
  8. J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform,” J. Lightwave Technol. 25, 1269–1275 (2007). [CrossRef]
  9. A. C. Bedoya, M. Y. Ling, J. Brouckaert, N. A. Yebo, D. Van Thourhout, and R. G. Baets, “Biodiesel sensing using silicon-on-insulator technologies,” Proc. SPIE 7366, 73660D(2009). [CrossRef]
  10. P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated optical sensor using a liquid-core waveguide in a Mach–Zehnder interferometer,” Opt. Express 16, 18164–18172 (2008). [CrossRef] [PubMed]
  11. R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach–Zehnder interferometer based on liquid-ore waveguides,” Appl. Phys. Lett. 93, 011106–011109(2008). [CrossRef]
  12. A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. o Cerullo, and R. Osellame, “Three-dimensional Mach–Zehnder interferometer in a microfluidic chip for spatially resolved label-free detection,” Lab Chip 10, 1167–1173 (2010). [CrossRef] [PubMed]
  13. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006). [CrossRef] [PubMed]
  14. F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117(2006). [CrossRef]
  15. H. H. J. E. Kicken, P. F. A. Alkemade, R. W. van der Heijden, F. Karouta, R. Nötzel, E. van der Drift, and H. W. M. Salemink, “Wavelength tuning of planar photonic crystals by local processing of individual holes,” Opt. Express 17, 22005–22011(2009). [CrossRef] [PubMed]
  16. I. Märki, M. Salt, and H. P. Herzig, “Tuning the resonance of a photonic crystal microcavity with an AFM probe,” Opt. Express 14, 2969–2978 (2006). [CrossRef] [PubMed]
  17. A. C. Bedoya, S. Mahmoodian, C. Monat, S. Tomljenovic-Hanic, C. Grillet, P. Domachuk, E. C. Mägi, B. J. Eggleton, and R. W. van der Heijden, “Liquid crystal dynamics in a photonic crystal cavity created by selective microfluidic infiltration,” Opt. Express 18, 27280–27290 (2010). [CrossRef]
  18. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009). [CrossRef] [PubMed]
  19. P. Domachuk, C. Grillet, V. Ta’eed, E. Mägi, J. Bolger, and B. J. Eggleton, “Microfluidic interferometer,” Appl. Phys. Lett. 86, 024103 (2005). [CrossRef]
  20. M. E. Van Valkenburg, R. L. Vaughn, M. Williams, and J. S. Wilkes, “Ionic liquid heat transfer fluids,” presented at the Fifteenth Symposium on Thermophysical Properties, Boulder, Colorado, USA, 22–27 June 2003.
  21. T. Devarajan, S. Higashiya, C. Dangler, M. Rane-Fondacaro, J. Snyder, and P. Haldar, “Novel ionic liquid electrolyte for electrochemical double-layer capacitors,” Electrochem. Comm. 11, 680–683 (2009). [CrossRef]
  22. M. J. Earle and K. R. Seddon, “Ionic liquids. Green solvents for the future,” Pure Appl. Chem. 72, 1391–1398 (2000). [CrossRef]
  23. M. Deetlefs, M. Shara, and K. R. Seddon, “Refractive indices of ionic liquids,” in Ionic Liquids IIIA: Fundamentals, Progress, Challenges, and Opportunities, R.D.Rogers and K.R.Seddon, eds., ACS Symposium Series (American Chemical Society, 2005), pp. 219–233. [CrossRef]
  24. S. Sowmiah, V. Srinivasadesikan, M. C. Tseng, and Y. H. Chu, “On the chemical stabilities of ionic liquids,” Molecules 143780–3813 (2009). [CrossRef] [PubMed]
  25. M. A. Iglesias-Otero, J. Troncoso, E. Carballo, and L. Roman, “Density and refractive index in mixtures of ionic liquids and organic solvents: correlations and predictions,” J. Chem. Thermodyn. 40, 949–956 (2008). [CrossRef]
  26. R. Rogers and K. R. Seddon, eds., Ionic Liquids IIIA: Fundamentals, Progress, Challenges, and Opportunities, Vol. 901 in ACS Symposium Series (American Chemical Society, 2005).
  27. C. D. Tran, S. H. De Paoli Lacerda, and D. Oliviera, “Absorption of water by room-temperature ionic liquids: effect of anions on concentration and state of water,” Appl. Spectrosc. 57, 152–157 (2003). [CrossRef] [PubMed]
  28. C. Grillet, P. Domachuk, V. Ta’eed, E. Mägi, J. A. Bolger, and B. J. Eggleton, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440–5447 (2004). [CrossRef] [PubMed]
  29. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” Proc. SPIE 6273, 62732K (2006). [CrossRef]
  30. T. Buffeteau, J. Grondin, and J. C. Lassegue, “Infrared spectroscopy of ionic liquids: quantitative aspects and determination of optical constants,” Appl. Spectrosc. 64, 112–119 (2010). [CrossRef] [PubMed]
  31. M. Deetlefs, K. R. Seddona, and M. Sharab, “Neoteric optical media for refractive index determination of gems and minerals,” New J. Chem. 30, 317–326 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited