OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 16 — Jun. 1, 2011
  • pp: 2443–2450

Comparison of two-, three-, and four-exposure quadrature phase-shifting holography

Jung-Ping Liu, Ting-Chung Poon, Gui-Syu Jhou, and Po-Jung Chen  »View Author Affiliations


Applied Optics, Vol. 50, Issue 16, pp. 2443-2450 (2011)
http://dx.doi.org/10.1364/AO.50.002443


View Full Text Article

Enhanced HTML    Acrobat PDF (969 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In standard (four-exposure) quadrature phase-shifting holography (QPSH), two holograms and two intensity maps are acquired for zero-order-free and twin-image-free reconstruction. The measurement of the intensity map of the object light can be omitted in three-exposure QPSH. Furthermore, the measurements of the two intensity maps can be omitted in two-exposure QPSH, and the acquisition time of the overall holographic recording process is reduced. In this paper we examine the quality of the reconstructed images in two-, three-, and four-exposure QPSH, in simulations as well as in optical experiments. Various intensity ratios of the object light and the reference light are taken into account. Simulations show that two- and three-exposure QPSH can provide reconstructed images with quality comparable to that of four-exposure QPSH at a low intensity ratio. In practice the intensity ratio is limited by visibility, and thus four-exposure QPSH exhibits the best quality of the reconstructed image. The uniformity and the phase error of the reference light are also discussed. We found in most cases there is no significant difference between the reconstructed images in two- and three-exposure QPSH, and the quality of the reconstructed images is acceptable for visual applications such as the acquisition of three-dimensional scene for display or particle tracking.

© 2011 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: November 18, 2010
Revised Manuscript: February 26, 2011
Manuscript Accepted: March 16, 2011
Published: May 27, 2011

Citation
Jung-Ping Liu, Ting-Chung Poon, Gui-Syu Jhou, and Po-Jung Chen, "Comparison of two-, three-, and four-exposure quadrature phase-shifting holography," Appl. Opt. 50, 2443-2450 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-16-2443


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T.-C.Poon, ed., Digital Holography and Three-Dimensional Display (Springer, 2006). [CrossRef]
  2. U. Schnars and W. Jueptner, Digital Holography(Springer, 2005).
  3. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999). [CrossRef]
  4. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000). [CrossRef]
  5. W. Pan, W. Lu, Y. Zhu, and J. Wang, “One-shot in-line digital holography based Hilbert phase-shifting,” Chin. Opt. Lett. 7, 1123–1125 (2009). [CrossRef]
  6. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed]
  7. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998). [CrossRef]
  8. L. Z. Cai, Q. Liu, and X. L. Yang, “Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps,” Opt. Lett. 28, 1808–1810 (2003). [CrossRef] [PubMed]
  9. P. Guo and A. J. Devaney, “Digital microscopy using phase-shifting digital holography with two reference waves,” Opt. Lett. 29, 857–859 (2004). [CrossRef] [PubMed]
  10. X. F. Meng, L. Z. Cai, Y. R. Wang, X. L. Yang, X. F. Xu, G. Y. Dong, X. X. Shen, and X. C. Cheng, “Wavefront reconstruction by two-step generalized phase-shifting interferometry,” Opt. Commun. 281, 5701–5705 (2008). [CrossRef]
  11. W. Chen, C. Quan, C. J. Tay, and Y. Fu, “Quantitative detection and compensation of phase-shifting error in two-step phase-shifting digital holography,” Opt. Commun. 282, 2800–2805 (2009). [CrossRef]
  12. X. F. Xu, L. Z. Cai, Y. R. Wang, and R. S. Yan, “Direct phase shift extraction and wavefront reconstruction in two-step generalized phase-shifting interferometry” J. Opt. 12, 015301 (2010). [CrossRef]
  13. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006). [CrossRef] [PubMed]
  14. X. F. Meng, X. Peng, L. Z. Cai, A. M. Li, J. P. Guo, and Y. R. Wang, “Wavefront reconstruction and three-dimensional shape measurement by two-step dc-term-suppressed phase-shifted intensities,” Opt. Lett. 34, 1210–1212(2009). [CrossRef] [PubMed]
  15. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009). [CrossRef] [PubMed]
  16. J.-P. Liu and T.-C. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34, 250–252(2009). [CrossRef] [PubMed]
  17. J. Hahn, H. Kim, S.-W. Cho, and B. Lee, “Phase-shifting interferometry with genetic algorithm-based twin image noise elimination,” Appl. Opt. 47, 4068–4076 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited