OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 17 — Jun. 10, 2011
  • pp: 2500–2507

From the channel model of an InSb-based superresolution optical disc system to impulse response and resolution limits

Dietmar Hepper  »View Author Affiliations


Applied Optics, Vol. 50, Issue 17, pp. 2500-2507 (2011)
http://dx.doi.org/10.1364/AO.50.002500


View Full Text Article

Enhanced HTML    Acrobat PDF (1073 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The signal model of a superresolution optical channel can be an efficient tool for developing components of an associated high-density optical disc system. While the behavior of the laser diode, aperture, lens, and detector are properly described, a general mathematical model of the superresolution disc itself has not yet been available until recently. Different approaches have been made to describe the properties of a mask layer, mainly based on temperature- or power-dependent nonlinear effects. A complete signal-based or phenomenological optical channel model—from non-return-to-zero inverted input to disc readout signal—has recently been developed including the reflectivity of a superresolution disc with InSb used for the mask layer. In this contribution, the model is now extended and applied to a moving disc including a land-and-pit structure, and results are compared with data read from real superresolution discs. Both impulse response and resolution limits are derived and discussed. Thus the model provides a bridge from physical to readout signal properties, which count after all. The presented approach allows judging of the suitability of a mask layer material for storage density enhancement already based on static experiments, i.e., even before developing an associated disc drive.

© 2011 Optical Society of America

OCIS Codes
(160.2900) Materials : Optical storage materials
(210.0210) Optical data storage : Optical data storage
(210.4590) Optical data storage : Optical disks
(210.4810) Optical data storage : Optical storage-recording materials
(220.4830) Optical design and fabrication : Systems design
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Optical Data Storage

History
Original Manuscript: October 29, 2010
Revised Manuscript: March 18, 2011
Manuscript Accepted: March 25, 2011
Published: June 1, 2011

Citation
Dietmar Hepper, "From the channel model of an InSb-based superresolution optical disc system to impulse response and resolution limits," Appl. Opt. 50, 2500-2507 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-17-2500


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superRENS,” presented at the E*PCOS05 European Symposium Phase Change and Ovonic Sciences, Cambridge, UK, 3–6 September 2005.
  2. B. Hyot, X. Biquard, and F. Laulagnet, “Superresolution ROM disc with a semi-conductive InSb active layer,“ presented at the E*PCOS07 European Symposium Phase Change and Ovonic Sciences, Zermatt, Switzerland, 1–4 September 2007.
  3. D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD—technology and prototype for a 4th-generation omni-purpose optical disc system,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2008), pp. 57–58.
  4. D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-Generation Optical Disc,“ in Proceedings of IEEE International Conference on Consumer Electronics (IEEE, 2009), paper 1.3-3.
  5. URL: http://www.4goodtechnology.org.
  6. G. Bouwhuis and H. M. Spruit, “Optical storage read-out of nonlinear disks,” Appl. Opt. 29, 3766–3768 (1990). [CrossRef] [PubMed]
  7. K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210–5213 (1993). [CrossRef]
  8. J.-R. Liu, P.-Y. Liu, N.-Y. Tang, and H.-P. D. Shieh, “Pulse-read on erasable thermal phase-change superresolution disks,” Appl. Opt. 37, 8187–8194 (1998). [CrossRef]
  9. J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotechnology 15, 411–415 (2004). [CrossRef]
  10. J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2006). [CrossRef]
  11. B. Hyot, X. Biquard, and F. Laulagnet, “Super-resolution ROM disc with a semi-conductive InSb active layer,“ presented at the E*PCOS07 European Symposium Phase Change and Ovonic Sciences ( 2007).
  12. D. Hepper and S. Knappmann, “Channel model for InSb-based superresolution optical disc system,” Appl. Opt. 49, 1923–1931 (2010). [CrossRef] [PubMed]
  13. Y. Li, “Degeneracy in the Fraunhofer diffraction of truncated Gaussian beams,” J. Opt. Soc. Am. A 4, 1237–1242 (1987). [CrossRef]
  14. K. Cai, “Design and analysis of parity-check-code-based optical recording systems,” Ph.D. dissertation (Technical University of Eindhoven/National University of Singapore, 2007).
  15. H. Pozidis, J. W. M. Bergmans, and W. M. J. Coene, “Modeling and compensation of asymmetry in optical recording,” IEEE Trans. Commun. 50, 2052–2063 (2002). [CrossRef]
  16. J. Pichon, M.-F. Armand, F. Laulagnet, and B. Hyot, “Thermo optical origins of the superresolution effect. Real-time characterization of the huge and reversible optical nonlinearity of InSb,“ presented at the ISOM 2007 International Symposium on Optical Memory ((2007).
  17. A. Marchewka, C. Ripperda, K. Wolter, M. Först, and H. Kurz, “Analytik der Maskierungsschicht in wiederbeschreibbaren SuperRENS-Datenspeichern,” Rheinisch-Westfälische Technische Hochschule Aachen, Germany (2008).
  18. J. Pichon, “Enregistrement optique haute densité: etude physique et physico-chimique du phénomène de superresolution,” Ph.D. dissertation (Institut Polytechnique de Grenoble, 2008).
  19. A. B. Marchant, “Optical disk readout: a model for coherent scanning,” Appl. Opt. 21, 2085–2088 (1982). [CrossRef] [PubMed]
  20. V. B. Jipson and C. C. Williams, “Two-dimensional modeling of an optical disk readout,” Appl. Opt. 22, 2202–2209 (1983). [CrossRef] [PubMed]
  21. Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. 35, 423–428 (1996). [CrossRef]
  22. J.-R. Liu, P.-Y. Liu, N.-Y. Tang, and H.-P. D. Shieh, “Pulse-read on erasable thermal phase-change superresolution disks,” Appl. Opt. 37, 8187–8194 (1998). [CrossRef]
  23. D. Hepper, G. Pilard, X.-M. Chen, and C. Féry, “Optical channel characterization for an InSb-based superresolution disc system,” Proc. SPIE 7730, 773026 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited