OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 17 — Jun. 10, 2011
  • pp: 2523–2530

Design of a vector-sum integrated microwave photonic phase shifter in silicon-on-insulator waveguides

Pengfei Qu, Caixia Liu, Wei Dong, Weiyou Chen, Fumin Li, Haibin Li, Zhaoxin Gong, Shengping Ruan, Xindong Zhang, and Jingran Zhou  »View Author Affiliations

Applied Optics, Vol. 50, Issue 17, pp. 2523-2530 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1078 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An orthogonal vector-sum integrated microwave photonic phase shifter (IMWPPS), consisting of mode-order converter multiplexers (MOCMs), a variable optical power splitter (VOPS), an optical switch (OS) and fixed time delay lines (FTDLs), was theoretically demonstrated in a silicon-on-insulator wafer. MOCMs, as a key element of our device, were employed to generate orthogonal vector signals and served as lossless optical combiners. Combining with the thermo-optical VOPS, OS and FTDLs, the microwave phase shift of 0 2 π could be achieved by a refractive index variation of 0 15 × 10 3 in the millimeter wave band. The corresponding tuning resolution was about 1.64 ° / ° C . This work, for the first time to our knowledge, provides an attractive solution to transferring a vector-sum method based bulk MWPPS into a integrated one, which is very important for large-scale optically controlled phase array antenna.

© 2011 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(130.3120) Integrated optics : Integrated optics devices
(160.6840) Materials : Thermo-optical materials
(230.7370) Optical devices : Waveguides
(350.4010) Other areas of optics : Microwaves

ToC Category:
Optical Devices

Original Manuscript: September 16, 2010
Revised Manuscript: December 31, 2010
Manuscript Accepted: January 27, 2011
Published: June 1, 2011

Pengfei Qu, Caixia Liu, Wei Dong, Weiyou Chen, Fumin Li, Haibin Li, Zhaoxin Gong, Shengping Ruan, Xindong Zhang, and Jingran Zhou, "Design of a vector-sum integrated microwave photonic phase shifter in silicon-on-insulator waveguides," Appl. Opt. 50, 2523-2530 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. L. Van Blaricum, “Photonic systems for antenna applications,” IEEE Antennas Propag. Mag. 36, 30–38 (1994). [CrossRef]
  2. J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, and M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982(1995). [CrossRef]
  3. H. S. Tang, L. Wu, Z. Fu, D. An, Z. Han, and R. T. Chen, “Polymer-based optical waveguide circuits for photonic phased-array antennas,” Proc. SPIE 3632, 250–261 (1999). [CrossRef]
  4. X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer based thermo-optic switch for optical true time delay,” Proc. SPIE 5728, 60–67 (2005). [CrossRef]
  5. Q. Chang, Q. Li, Z. Zhang, M. Qiu, and T. Ye, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett. 21, 60–62(2009). [CrossRef]
  6. M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18, 6172–6182 (2010). [CrossRef] [PubMed]
  7. P. Qu, J. Zhou, W. Chen, F. Li, H. Li, C. Liu, S. Ruan, and W. Dong, “Analysis and design of tunable wideband microwave photonic phase shifter based on Fabry–Perot cavity and Bragg mirrors in silicon-on-insulator waveguide,” Appl. Opt. 49, 2391–2396 (2010). [CrossRef] [PubMed]
  8. W. Vogel and M. Berroth, “Liquid crystal phase shifter for optically generated RF-signals,” in Proceedings of IEEE Conference on 30th European Microwave Conference (IEEE, 2000), pp. 1–4. [CrossRef]
  9. S. J. Kim and N. H. Myung, “A new active phase shifter using a vector sum method,” IEEE Microwave Guided Wave Lett. 10, 233–235 (2000). [CrossRef]
  10. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229(2006). [CrossRef]
  11. L. A. Bui, A. Mitchell, K. Ghnrbani, and T.-H. Chin, “Wideband RF photonic vector sum phase-shifter,” Electron. Lett. 39, 536–537 (2003). [CrossRef]
  12. D. Dai, Y. Shi, and S. He, “Characteristic analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration,” Appl. Opt. 45, 4941–4946 (2006). [CrossRef] [PubMed]
  13. T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16, 307–315 (2010). [CrossRef]
  14. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Lava, “42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17, 6252–6257 (2009). [CrossRef] [PubMed]
  15. A. W. Snyder and J. D. Love, Optical Waveguide Theory, 1st ed. (Chapman and Hall, 1983), pp. 209–218.
  16. K.-H. Lee, Y. M. Jhon, and W.-Y. Choi, “Photonic phase shifter based on vector-sum technique with polarization-maintaining fibers,” Opt. Lett. 30, 702–704 (2005). [CrossRef] [PubMed]
  17. J. Li, K. Xu, H. Huang, J. Wu, and J. Lin, “Photonic pulse generation and modulation for ultra-wideband-over-fiber applications,” in Proceedings of IEEE Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (IEEE, 2008), pp. 1–3. [CrossRef] [PubMed]
  18. M. N. Weiss and R. Srivastava, “Spectral characteristics of asymmetric directional couplers in graded index channel waveguides analyzed by coupled-mode and normal-mode techniques,” Appl. Opt. 34, 1029–1040 (1995). [CrossRef] [PubMed]
  19. J. F. Coward, T. K. Yee, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol. 11, 2201–2205 (1993). [CrossRef]
  20. R. G. Hunsperger, in Integrated Optics—Theory and Technology, 5th ed. (Springer, 2002), pp. 157–160.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited