OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 17 — Jun. 10, 2011
  • pp: 2531–2550

Methodology for detection of carbon monoxide in hot, humid media by telecommunication distributed feedback laser-based tunable diode laser absorption spectrometry

Lemthong Lathdavong, Jie Shao, Pawel Kluczynski, Stefan Lundqvist, and Ove Axner  »View Author Affiliations


Applied Optics, Vol. 50, Issue 17, pp. 2531-2550 (2011)
http://dx.doi.org/10.1364/AO.50.002531


View Full Text Article

Enhanced HTML    Acrobat PDF (2418 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Detection of carbon monoxide (CO) in combustion gases by tunable diode laser spectrometry is often hampered by spectral interferences from H 2 O and CO 2 . A methodology for assessment of CO in hot, humid media using telecommunication distributed feedback lasers is presented. By addressing the R14 line at 6395.4 cm 1 , and by using a dual-species-fitting technique that incorporates the fitting of both a previously measured water background reference spectrum and a 2 f -wavelength modulation lineshape function, percent-level concentrations of CO can be detected in media with tens of percent of water ( c H 2 O 40 % ) at T 1000 ° C with an accuracy of a few percent by the use of a single reference water spectrum for background correction.

© 2011 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3600) Lasers and laser optics : Lasers, tunable
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 9, 2010
Revised Manuscript: January 31, 2011
Manuscript Accepted: February 8, 2011
Published: June 1, 2011

Citation
Lemthong Lathdavong, Jie Shao, Pawel Kluczynski, Stefan Lundqvist, and Ove Axner, "Methodology for detection of carbon monoxide in hot, humid media by telecommunication distributed feedback laser-based tunable diode laser absorption spectrometry," Appl. Opt. 50, 2531-2550 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-17-2531


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. C. Saxena, and L. A. Thomas, “An equilibrium-model for predicting flue-gas composition of an incinerator,” Int. J. Energy Res. 19, 317–327 (1995). [CrossRef]
  2. R. Wischnewski, L. Ratschow, E. U. Hartge, and J. Werthe, “3D-simulation of concentration distributions inside large-scale circulating fluidized bed combustors,” in 20th International Conference on Fluidized Bed CombustionG.Yue, H.Zhang, C.Zhao, and Z.Luo eds. (Springer-Verlag, 2010), pp. 774–779.
  3. Alpha Online, Environmed Research, Inc., Sechelt, B.C., Canada, Indoor Air Quality—Carbon monoxide (CO), http://www.nutramed.com/environment/monoxide.htm, retrieved (11 October 2010).
  4. Wikipedia, the free encyclopedia, carbon monoxide, http://en.wikipedia.org/wiki/carbon_monoxide, retrieved (13 October 2010).
  5. A. Faiz, C. S. Weaver, and M. P. Walsh, Air Pollution from Motor Vehicles (The World Bank, 1996). [CrossRef]
  6. S. Fujii, S. Tomiyama, T. Nogami, M. Shirai, H. Ase, and T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997).
  7. Y. Deguchi, M. Noda, and M. Abe, “Improvement of combustion control through real-time measurement of O2 and CO concentrations in incinerators using diode laser absorption spectroscopy,” Proc. Combust. Inst. 29, 147–153 (2002). [CrossRef]
  8. M. G. Allen, “Diode laser absorption sensors for gas—dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998). [CrossRef]
  9. A. Fried and D. Richter, “Infrared absorption spectroscopy,” in Analytical Techniques for Atmospheric Measurements, D.Heard ed. (Blackwell, 2006), pp. 72–146. [CrossRef]
  10. M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—a review,” Rev. Chem. Eng. 23, 65–147 (2007). [CrossRef]
  11. R. K. Hanson, P. A. Kuntz, and C. H. Kruger, “High-resolution spectroscopy of combustion gases using a tunable IR diode-laser,” Appl. Opt. 16, 2045–2048 (1977). [CrossRef] [PubMed]
  12. S. M. Schoenung and R. K. Hanson, “CO and temperature-measurements in a flat flame by laser-absorption spectroscopy and probe techniques,” Combust. Sci. and Tech. 24, 227–237 (1980). [CrossRef]
  13. D. T. Cassidy and L. J. Bonnell, “Trace gas-detection with short-external-cavity InGaAsP diode-laser transmitter modules operating at 1.58 mm,” Appl. Opt. 27, 2688–2693 (1988). [CrossRef] [PubMed]
  14. J. H. Miller, S. Elreedy, B. Ahvazi, F. Woldu, and P. Hassanzadeh, “Tunable diode-laser measurement of carbon-monoxide concentration and temperature in a laminar methane air diffusion flame,” Appl. Opt. 32, 6082–6089(1993). [CrossRef]
  15. R. R. Skaggs and J. H. Miller, “A study of carbon-monoxide in a series of laminar ethylene air diffusion flames using tunable diode-laser absorption-spectroscopy,” Comb. Flame 100, 430–439 (1995). [CrossRef]
  16. Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in-situ laser measurements of nonequilibrium carbon-monoxide in lean-premixed natural-gas combustion,” Comb. Flame 100, 395–406 (1995). [CrossRef]
  17. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998). [CrossRef]
  18. B. L. Upschulte, D. M. Sonnenfroh, and M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512(1999). [CrossRef]
  19. M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, and R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O and temperature using diode laser absorption sensors,” Proc. Combust. Inst. 28, 407–413 (2000). [CrossRef]
  20. J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3 mm,” Appl. Opt. 39, 5579–5589 (2000). [CrossRef]
  21. J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 mm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000). [CrossRef]
  22. J. J. Nikkari, J. M. Di Iorio, and M. J. Thomson, “In situ combustion measurements of CO, H2O, and temperature with a 1.58 mm diode laser and two-tone frequency modulation,” Appl. Opt. 41, 446–452 (2002). [CrossRef] [PubMed]
  23. H. Teichert, T. Fernholz, and V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003). [CrossRef] [PubMed]
  24. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 mm diode lasers,” Proc. Combust. Inst. 30, 1611–1618 (2005). [CrossRef]
  25. Y. Gerard, R. J. Holdsworth, and P. A. Martin, “Multispecies in situ monitoring of a static internal combustion engine by near-infrared diode laser sensors,” Appl. Opt. 46, 3937–3945(2007). [CrossRef] [PubMed]
  26. A. R. Awtry, B. T. Fisher, R. A. Moffatt, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799–806 (2007). [CrossRef]
  27. W. Wojcik, P. Komada, V. Firago, and I. Manak, “Measurement of CO concentration utilizing TDLAS in near IR range,” Przeglad Elektrotechniczny 84, 238–240 (2008).
  28. J. Reid and D. Labrie, “2nd-harmonic detection with tunable diode-lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  29. P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001). [CrossRef]
  30. R. K. Hanson and P. K. Falcone, “Temperature-measurement technique for high-temperature gases using a tunable diode-laser,” Appl. Opt. 17, 2477–2480 (1978). [CrossRef] [PubMed]
  31. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources (Springer-Verlag, 2003), pp. 445–510.
  32. J. Ropcke, G. Lombardi, A. Rousseau, and P. B. Davies, “Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review,” Plasma Sources Sci. Technol. 15, S148–S168 (2006). [CrossRef]
  33. A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92, 409–417 (2008). [CrossRef]
  34. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008). [CrossRef]
  35. J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008). [CrossRef]
  36. C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Konigstedt, G. W. Harris, J. Lelieveld, and H. Fischer, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO,” Appl. Phys. B 92, 419–430(2008). [CrossRef]
  37. F. K. Tittel, Y. A. Bakhirkin, R. F. Curl, A. A. Kosterev, M. R. McCurdy, S. G. So, and G. Wysocki, “Laser based chemical sensor technology: recent advances and applications,” in Advanced Environmental Monitoring, Y.J.Kim and U.Platt, eds. (Springer, 2008), pp. 50–63. [CrossRef]
  38. P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photon. 4, 95–98 (2010). [CrossRef]
  39. A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta Part A 58, 2405–2412 (2002). [CrossRef]
  40. Y. G. Zhang, X. J. Zhang, X. R. Zhu, A. Z. Li, and S. Liu, “Tunable diode laser absorption spectroscopy detection of N2O at 2.1 mm using antimonide laser and InGaAs photodiode,” Chin. Phys. Lett. 24, 2301–2303 (2007). [CrossRef]
  41. D. Barat, J. Angellier, A. Vicet, Y. Rouillard, L. Le Gratiet, S. Guilet, A. Martinez, and A. Ramdane, “Antimonide-based lasers and DFB laser diodes in the 2–2.7 mm wavelength range for absorption spectroscopy,” Appl. Phys. B 90, 201–204 (2008). [CrossRef]
  42. X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 mm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009). [CrossRef]
  43. J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 mm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104(2009). [CrossRef]
  44. S. Civis, J. Cihelka, and I. Matulkova, “Infrared diode laser spectroscopy,” Opto-Electron. Rev. 18, 408–420(2010). [CrossRef]
  45. P. Scott, “Mid-infrared lasers,” Nat. Photon. 4, 576–577(2010). [CrossRef]
  46. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  47. T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725 (2006). [CrossRef]
  48. M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson, and Y. Ikeda, “In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 mm,” Appl. Opt. 40, 821–828 (2001). [CrossRef]
  49. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010). [CrossRef]
  50. J. Vanderover and M. A. Oehlschlaeger, “A mid-infrared scanned-wavelength laser absorption sensor for carbon monoxide and temperature measurements from 900 to 4000 K,” Appl. Phys. B 99, 353–362 (2010). [CrossRef]
  51. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999). [CrossRef]
  52. B. L. Upschulte and M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 mm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998). [CrossRef]
  53. The structure of a spectrum can be affected by the presence of various concomitant constituents by different types of broadening processes. It has been found that H2O is a species that broadens molecular lines significantly. Therefore, the structure of a spectrum, either from the analyte or a background constituent, can depend on the concentration of water in the gas.
  54. H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407–416 (2007). [CrossRef]
  55. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503–511(2004). [CrossRef]
  56. G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195–1204(2007). [CrossRef]
  57. J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009). [CrossRef]
  58. L. S. Rothman, R. B. Wattson, R. R. Gamache, J. W. Schroeder, and A. McCann, “HITRAN HAWKS and HITEMP high-temperature molecular database,” Proc. SPIE 2471, 105–111 (1995). [CrossRef]
  59. Because the number density is related to the relative concentration of absorbers by n=cxp/kT=2.48×1019(T0/T)cxp, where k is the Boltzmann constant, T is the temperature (K), and T0 is a reference temperature here taken as 296 K, S(T) is related to S′(T) through S(T)=2.48×1019(T0/T)S′(T).
  60. P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).
  61. R. R. Gamache, S. Kennedy, R. Hawkins, and L. S. Rothman, “Total internal partition sums for molecules in the terrestrial atmosphere,” J. Mol. Struct. 517, 407–425 (2000). [CrossRef]
  62. In order to indisputably assess the spectral interferences of H2O on CO, a concentration of CO that is above that of most normal combustion gases, namely, 7%, was used in the spectral investigations in this work.
  63. P. Kluczynski, Å. M. Lindberg, and O. Axner, “Characterization of background signals in wavelength-modulation spectrometry in terms of a Fourier based theoretical formalism,” Appl. Opt. 40, 770–782 (2001). [CrossRef]
  64. P. Kluczynski, Å. M. Lindberg, and O. Axner, “Background signals in wavelength-modulation spectrometry with frequency-doubled diode-laser light. I. theory,” Appl. Opt. 40, 783–793(2001). [CrossRef]
  65. P. Kluczynski, Å. M. Lindberg, and O. Axner, “Background signals in wavelength-modulation spectrometry with frequency-doubled diode-laser light. II. experiment,” Appl. Opt. 40, 794–805 (2001). [CrossRef]
  66. Instead of evaluating the ability to extract the CO signal from a combined CO and H2O spectrum taken at dissimilar temperatures using a single reference spectrum, taken at a given temperature, it was found more reliable in this study (in order to assess the degree of retrieval of the CO signal in an as accurate manner as possible) to perform the opposite study, i.e., to evaluate the capability to extract the CO signal from a combined CO and H2O spectrum taken at a specific temperature using reference spectra taken at a variety of temperatures. By measuring the combined CO and H2O spectrum at 850 °C and reference spectra in the 700–1000 °C temperature range, the influence of temperature differences between the combined spectrum and the reference spectra ranging from −150 °C to 150 °C could be investigated.
  67. Because the H2O molecule is a strong broadener, it is possible that a fluctuating water concentration can affect the structure of the spectra through broadening processes, which, in turn, would affect the possibility to adequately extract the residual CO spectrum from the combined signal.
  68. Note that the detection limits given are the maximum limits for the technique. It is possible that, for the highest temperatures, the measured detection limits are affected by fluctuations in the gas mixing and water vaporizer systems.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited