OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 17 — Jun. 10, 2011
  • pp: 2640–2653

Optical response of laser-doped silicon carbide for an uncooled midwave infrared detector

Geunsik Lim, Tariq Manzur, and Aravinda Kar  »View Author Affiliations


Applied Optics, Vol. 50, Issue 17, pp. 2640-2653 (2011)
http://dx.doi.org/10.1364/AO.50.002640


View Full Text Article

Enhanced HTML    Acrobat PDF (1276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An uncooled mid-wave infrared (MWIR) detector is developed by doping an n-type 4H-SiC with Ga using a laser doping technique. 4H-SiC is one of the polytypes of crystalline silicon carbide and a wide bandgap semiconductor. The dopant creates an energy level of 0.30 eV , which was confirmed by optical spectroscopy of the doped sample. This energy level corresponds to the MWIR wavelength of 4.21 μm . The detection mechanism is based on the photoexcitation of electrons by the photons of this wavelength absorbed in the semiconductor. This process modifies the electron density, which changes the refractive index, and, therefore, the reflectance of the semiconductor is also changed. The change in the reflectance, which is the optical response of the detector, can be measured remotely with a laser beam, such as a He–Ne laser. This capability of measuring the detector response remotely makes it a wireless detector. The variation of refractive index was calculated as a function of absorbed irradiance based on the reflectance data for the as-received and doped samples. A distinct change was observed for the refractive index of the doped sample, indicating that the detector is suitable for applications at the 4.21 μm wavelength.

© 2011 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Detectors

History
Original Manuscript: September 7, 2010
Revised Manuscript: January 12, 2011
Manuscript Accepted: February 12, 2011
Published: June 7, 2011

Citation
Geunsik Lim, Tariq Manzur, and Aravinda Kar, "Optical response of laser-doped silicon carbide for an uncooled midwave infrared detector," Appl. Opt. 50, 2640-2653 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-17-2640


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Scribner, J. Schuler, P. Warren, J. Howard, and M. Kruer, “Image preprocessing for the infrared,” Proc. SPIE 4028, 222–233 (2000). [CrossRef]
  2. M. Reine, “Review of HgCdTe photodiodes for IR detection,” Proc. SPIE 4028, 320–330 (2000). [CrossRef]
  3. M. Schlessinger, Infrared Technology Fundamentals (Marcel Dekker, 1995), pp. 77–92.
  4. J. A. Jamieson, R. H. McFee, G. N. Plass, R. H. Grube, and R. G. Richards, Infrared Physics and Engineering (McGraw-Hill, 1963), pp. 43–73.
  5. J. L. Miller, Principles of Infrared Technology (Van Nostrand Reinhold, 1994), pp. 106–176.
  6. A. Rogalski, “HgCdTe infrared detector material: history, status and outlook,” Rep. Prog. Phys. 68, 2267–2336 (2005). [CrossRef]
  7. P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 10, 159–174 (2002).
  8. A. Rogalski, Infrared Photon Detectors (SPIE, 1995), pp. 1–11.
  9. J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors,” Infrared Phys. Technol. 46, 115–131(2004). [CrossRef]
  10. S. J. Lee, Y. H. Lee, S. H. Suh, Y. J. Oh, T. Y. Kim, M. H. Oh, C. J. Kim, and B. K. Ju, “Uncooled thermopile infrared detector with chromium oxide absorption layer,” Sens. Actuators A 95, 24–28 (2001). [CrossRef]
  11. P. Muralt, “Micromachined infrared detectors based on pyroelectric thin films,” Rep. Prog. Phys. 64, 1339–1388 (2001). [CrossRef]
  12. M. Noda, K. Hashimoto, R. Kubo, H. Tanaka, T. Mukaigawa, H. Xu, and M. Okuyama, “A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor,” Sens. Actuators A 77, 39–44 (1999). [CrossRef]
  13. F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays—a review,” Proc. SPIE 6836, 68360D (2007). [CrossRef]
  14. F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A 133, 236–242 (2007). [CrossRef]
  15. G. N. Violina, E. V. Kalinina, G. F. Kholujanov, V. G. Kossov, R. R. Yafaev, A. Hallen, and A. O. Konstantinov, “Silicon carbide detectors of high-energy particles,” Semiconductors 36, 710–713 (2002). [CrossRef]
  16. E. Vittone, N. Skukan, Z. Pastuovic, P. Olivero, and M. Jaksic, “Charge collection efficiency mapping of interdigitated 4H-SiC detectors,” Nucl. Instrum. Methods Phys. Res. B 267, 2197–2202 (2009). [CrossRef]
  17. F. Nava, G. Bertuccio, A. Cavallini, and E. Vittone, “Silicon carbide and its use as a radiation detector material,” Meas. Sci. Technol. 19, 102001 (2008). [CrossRef]
  18. A. A. Lebedev, “Silicon carbide: materials, processing, and devices,” in Deep-Level Defects in SiC Materials and Devices, Z.C.Feng and J. H. Zhao, eds., Vol. 20 of Optoelectronic Properties of Semiconductors and Superlattices (Taylor & Francis, 2004), Chap. 4, pp. 121–163.
  19. A. A. Lebedev, “Deep level centers in silicon carbide: a review,” Semiconductors 33, 107–130 (1999). [CrossRef]
  20. S. Bet, N. R. Quick, and A. Kar, “Laser doping of chromium as a double acceptor in silicon carbide with reduced crystalline damage and nearly all dopants in activated state,” Acta Mater. 56, 1857–1867 (2008). [CrossRef]
  21. R. Siegel and J. Howell, Thermal Radiation Heat Transfer (Taylor & Francis, 1994), pp. 60–131.
  22. F. P. Incropera and D. P. DeWitt, Introduction to Heat Transfer (Wiley, 1985), pp. 611–613.
  23. E. Hecht, Optics (Pearson Education, 2002), pp. 259–279.
  24. J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2004), pp. 7–30. [CrossRef]
  25. M. Rubin, “Solar optical properties of windows,” Energy Res. 6, 123–133 (1982). [CrossRef]
  26. Z. Tian, N. R. Quick, and A. Kar, “Laser-enhanced diffusion of nitrogen and aluminum dopants in silicon carbide,” Acta Mater. 54, 4273–4283 (2006). [CrossRef]
  27. C. A. Bennett, Principles of Physical Optics (Wiley, 2008), p. 87.
  28. E. L. Dereniak and G. Boreman, Infrared Detectors and Systems (Wiley, 1996), p. 152–190.
  29. E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984), p. 47.
  30. J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975), pp. 166–184.
  31. Y. Li, D. Pan, C. Yang, and Y. Luo, “NETD test of high-sensitivity infrared camera,” Proc. SPIE 6723, 67233Q (2007). [CrossRef]
  32. W. H. Beyer, Handbook of Mathematical Sciences (CRC Press, Florida 1975), p. 727.
  33. P. J. Picone, “Advanced infrared photodetectors (materials review),” Surveillance Research Laboratory Research Report, December 1993.
  34. M. C. Gupta and J. Ballato, The Handbook of Photonics (CRC Press, 2006), pp. 6–32.
  35. S. Sheng, M. G. Spencer, X. Tang, P. Zhou, K. Wongchotigul, C. Taylor, and G. L. Harris, “An investigation of 3C-SiC photoconductive power switching devices,” Mater. Sci. Eng. B 46, 147–151 (1997). [CrossRef]
  36. S. Dogan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett. 82, 3107–3109 (2003). [CrossRef]
  37. F. Zhao, M. M. Islam, P. Muzykov, A. Bolotnikov, and T. S. Sudarshan, “Optically activated 4H-SiC p-i-n diodes for high-power applications,” IEEE Electron Device Lett. 30, 1182–1184 (2009). [CrossRef]
  38. P. S. Cho, J. Goldhar, C. H. Lee, S. E. Saddow, and P. Neudeck, “Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices,” J. Appl. Phys. 77, 1591–1599(1995). [CrossRef]
  39. J. S. Sullivan and J. R. Stanly, “6H-SiC photoconductive switches triggered at below bandgap wavelengths,” IEEE Trans. Dielectr. Electr. Insul. 14, 980–985 (2007). [CrossRef]
  40. X. Bai, H.-D. Liu, D. C. McIntosh, and J. C. Campbell, “High-performance SiC avalanche photodiode for single ultraviolet photon detection,” Proc. SPIE 7055, 70550Q (2008). [CrossRef]
  41. X. Bai, X. Guo, D. C. McIntosh, H.-D. Liu, and J. C. Campbell, “High detection sensitivity of ultraviolet 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 43, 1159–1162(2007). [CrossRef]
  42. F. Qian, R. Schnupp, C. Q. Chen, R. Helbig, and H. Ryssel, “Indirect-coupling ultraviolet-sensitive photodetector with high electrical gain, fast response, and low noise,” Sens. Actuators 86, 66–72 (2000). [CrossRef]
  43. T. J. Phillips, “High performance thermal imaging technology,” III-Vs Rev. 15, 32–34 (2002). [CrossRef]
  44. A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27, 59–120 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited