OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 17 — Jun. 10, 2011
  • pp: 2701–2707

Electrically switchable holographic liquid crystal/polymer Fresnel lens using a Michelson interferometer

Hossein Jashnsaz, Ezeddin Mohajerani, Hossein Nemati, Seyed Hossein Razavi, and Isa Ahmad Alidokht  »View Author Affiliations

Applied Optics, Vol. 50, Issue 17, pp. 2701-2707 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1191 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A holographic technique for fabricating an electrically switchable liquid crystal/polymer composite Fresnel lens is reported. A Michelson interferometer is used to produce the required Fresnel pattern, by placing a convex lens into one path of the interferometer. Simplicity of the method and the possibility of fabricating different focal length lenses in a single arrangement are advantages of the method. The performance of the fabricated lens was demonstrated and its electro-optical properties were investigated for its primary focal length.

© 2011 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(160.5470) Materials : Polymers
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices
(050.1965) Diffraction and gratings : Diffractive lenses

ToC Category:

Original Manuscript: January 10, 2011
Revised Manuscript: March 9, 2011
Manuscript Accepted: March 11, 2011
Published: June 8, 2011

Hossein Jashnsaz, Ezeddin Mohajerani, Hossein Nemati, Seyed Hossein Razavi, and Isa Ahmad Alidokht, "Electrically switchable holographic liquid crystal/polymer Fresnel lens using a Michelson interferometer," Appl. Opt. 50, 2701-2707 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Chigrinov, E. P. Pozhidaev, D. A. Yakovlev, and H. S. Kwok, “Liquid crystal devices for optical communication systems,” in Optoelectronics, Proceedings of the Sixth Chinese Symposium (IEEE, 2003), pp. 204–207, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1278203. [CrossRef]
  2. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007). [CrossRef] [PubMed]
  3. H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14, 11292–11298 (2006). [CrossRef] [PubMed]
  4. C. W. Chiu, Y. C. Lin, P. C. P. Chao, and Y. G. Fuh, “Achieving high focusing power for a large aperture liquid crystal lens with novel hole and ring electrodes,” Opt. Express 16, 19277–19284 (2008). [CrossRef]
  5. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328–11335 (2007). [CrossRef] [PubMed]
  6. R. Cudney, L. Ríos, and H. Escamilla, “Electrically controlled Fresnel zone plates made from ring-shaped 180° domains,” Opt. Express 12, 5783–5788 (2004). [CrossRef] [PubMed]
  7. J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990). [CrossRef] [PubMed]
  8. M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996). [CrossRef]
  9. G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal Fresnel lens,” Proc. SPIE 1168, 352–357 (1989).
  10. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998). [CrossRef]
  11. J. S. Patel and K. Rastani, “Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays,” Opt. Lett. 16, 532–534 (1991). [CrossRef] [PubMed]
  12. Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003). [CrossRef] [PubMed]
  13. Y. H. Fan, H. Ren, and S. T. Wu, “Electrically switchable Fresnel lens using a polymer-separated composite film,” Opt. Express 13, 4141–4147 (2005). [CrossRef] [PubMed]
  14. H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81, 3537–3539 (2002). [CrossRef]
  15. V. Presnyakov, K. Asatryan, T. Galstian, and A. Tork, “Polymer-stabilized liquid crystal for tunable microlens applications,” Opt. Express 10, 865–870 (2002). [PubMed]
  16. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230, 267–271 (2004). [CrossRef]
  17. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003). [CrossRef]
  18. N. Kitaura, S. Ogata, and Y. Mori, “Spectrometer employing a micro-Fresnel lens,” Opt. Eng. 34, 584–588 (1995). [CrossRef]
  19. H. Nemati, E. Mohajerani, A. Moheghi, M. B. Rad, and N. H. Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” Europhys. Lett. 87, 64001(2009). [CrossRef]
  20. E. Marom, E. Ben-Eliezer, L. P. Yaroslavsky, and Z. Zalevsky, “Two methods for increasing the depth of focus of imaging systems,” Proc. SPIE 5227, 8–15 (2004).
  21. M. Makowski, G. Mikula, M. Sypek, A. Kolodziejczyk, and C. Prokopowicz, “Diffractive elements with extended depth of focus,” Proc. SPIE 5484, 475–481 (2004). [CrossRef]
  22. S. C. Kim, S. E. Lee, and E. S. Kim, “Optical implementation of real-time incoherent 3D imaging and display system using modified triangular interferometer,” Proc. SPIE 5443, 250–256 (2004). [CrossRef]
  23. X. Ren, S. Liu, and X. Zhang, “Fabrication of off-axis holographic Fresnel lens used as multiplexer/demultiplexer in optical communications,” Proc. SPIE 5456, 391–398 (2004). [CrossRef]
  24. J. T. Early and R. Hyde, “Twenty-meter space telescope based on diffractive Fresnel lens,” Proc. SPIE 5166, 148–156 (2004). [CrossRef]
  25. L. H. Domash, Y.-M. Chen, B. Gomatam, C. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lenses in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996). [CrossRef]
  26. B. E. A. Saleh and M. C. Teich, “Wave optics,” in Fundamentals of Photonics (Wiley, 2007), pp. 38–73.
  27. T. J. White, W. B. Liechty, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs),” Polymer 47, 2289–2298(2006). [CrossRef]
  28. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000). [CrossRef]
  29. J. L. West, “Phase separation of liquid crystals in polymers,” Mol. Cryst. Liq. Cryst. 157, 427–441 (1988). [CrossRef]
  30. Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal–polymer composite,” Appl. Phys. Lett. 86, 041115(2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited