Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure

Not Accessible

Your library or personal account may give you access

Abstract

In this work an all-optical hot-wire flowmeter based on a silver coated fiber combining a long period grating and a fiber Bragg grating (FBG) structure is proposed. Light from a pump laser at 1480nm propagating down the fiber is coupled by the long period grating into the fiber cladding and is absorbed by the silver coating deposited on the fiber surface over the Bragg grating structure. This absorption acts like a hot wire raising the fiber temperature locally, which is effectively detected by the FBG resonance shift. The temperature increase depends on the flow speed of the surrounding air, which has the effect of cooling the fiber. It is demonstrated that the Bragg wavelength shift can be related to the flow speed. A flow speed resolution of 0.08m/s is achieved using this new configuration.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
All-optical fiber anemometer based on laser heated fiber Bragg gratings

Shaorui Gao, A. Ping Zhang, Hwa-Yaw Tam, L. H. Cho, and Chao Lu
Opt. Express 19(11) 10124-10130 (2011)

Microfluidic flowmeter based on micro “hot-wire” sandwiched Fabry-Perot interferometer

Ying Li, Guofeng Yan, Liang Zhang, and Sailing He
Opt. Express 23(7) 9483-9493 (2015)

Intensity-interrogated hot-wire anemometer based on chirp effect of a fiber Bragg grating

Jiarui Zhang, Yuhan Tang, Pengbai Xu, Ou Xu, and Xinyong Dong
Opt. Express 30(20) 37124-37130 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved