OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 17 — Jun. 10, 2011
  • pp: 2744–2751

Kernel wavelet-Reed–Xiaoli: an anomaly detection for forward-looking infrared imagery

Asif Mehmood and Nasser M. Nasrabadi  »View Author Affiliations

Applied Optics, Vol. 50, Issue 17, pp. 2744-2751 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (841 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes a new kernel wavelet-based anomaly detection technique for long-wave (LW) forward-looking infrared imagery. The proposed approach called kernel wavelet-Reed–Xiaoli (wavelet-RX) algorithm is essentially an extension of the wavelet-RX algorithm (combination of wavelet transform and RX anomaly detector) to a high-dimensional feature space (possibly infinite) via a certain nonlinear mapping function of the input data. The wavelet-RX algorithm in this high-dimensional feature space can easily be implemented in terms of kernels that implicitly compute dot products in the feature space (kernelizing the wavelet-RX algorithm). In the proposed kernel wavelet-RX algorithm, a two-dimensional wavelet transform is first applied to decompose the input image into uniform subbands. A number of significant subbands (high-energy subbands) are concatenated together to form a subband-image cube. The kernel RX algorithm is then applied to this subband-image cube. Experimental results are presented for the proposed kernel wavelet-RX, wavelet-RX, and the classical constant false alarm rate (CFAR) algorithm for detecting anomalies (targets) in a large database of LW imagery. The receiver operating characteristic plots show that the proposed kernel wavelet-RX algorithm outperforms the wavelet-RX as well as the classical CFAR detector.

© 2011 Optical Society of America

OCIS Codes
(040.1880) Detectors : Detection
(040.2480) Detectors : FLIR, forward-looking infrared
(100.0100) Image processing : Image processing
(100.5010) Image processing : Pattern recognition
(100.7410) Image processing : Wavelets
(100.4994) Image processing : Pattern recognition, image transforms

ToC Category:
Remote Sensing and Sensors

Original Manuscript: October 26, 2010
Revised Manuscript: February 23, 2011
Manuscript Accepted: March 7, 2011
Published: June 9, 2011

Asif Mehmood and Nasser M. Nasrabadi, "Kernel wavelet-Reed–Xiaoli: an anomaly detection for forward-looking infrared imagery," Appl. Opt. 50, 2744-2751 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. J. Stein, S. G. Beaven, L. E. Hoff, E. M. Winter, A. P. Schaum, and A. D. Stocker, “Anomaly detection from hyperspectral imagery,” IEEE Signal Process. Mag. 19 (1), 58–69(2002). [CrossRef]
  2. H. Kwon, S. Z. Der, and N. M. Nasrabadi, “Adaptive anomaly detection using subspace separation for hyperspectral images,” Opt. Eng. 42, 3342–3351 (2003). [CrossRef]
  3. C. I. Chang and S. S. Chiang, “Anomaly detection and classification for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens. 40, 1314–1325 (2002). [CrossRef]
  4. S. Tiwari, S. Agarwal, and A. Trang, “FastKRX: a fast approximation for kernel RX anomaly detection,” Proc. SPIE 6953, 695316 (2008). [CrossRef]
  5. S. Kuttikkad and R. Chellappa, “Non-Gaussian CFAR techniques for target detection in high resolution SAR images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 1994), pp. 910–914.
  6. B. Bhanu, “Automatic target recognition: state of the art survey,” IEEE Trans. Aerosp. Electron. Syst. AES-22, 364–379 (1986). [CrossRef]
  7. A. Margalit, I. S. Reed, and R. M. Gagliardi, “Adaptive optical target detection using correlated images,” IEEE Trans. Aerosp. Electron. Syst. AES-21, 394–405 (1985). [CrossRef]
  8. J. F. Khan and M. S. Alam, “Target detection in cluttered forward-looking infrared imagery,” Opt. Eng. 44, 076404 (2005). [CrossRef]
  9. J. F. Khan, M. S. Alam, and S. M. A. Bhuiyan, “Automatic target detection in forward-looking infrared imagery via probabilistic neural networks,” Appl. Opt. 48, 464–476 (2009). [CrossRef] [PubMed]
  10. S. Z. Der and R. Chellappa, “Probe-based automatic target recognition in infrared imagery,” IEEE Trans. Image Process. 6, 92–102 (1997). [CrossRef] [PubMed]
  11. B. V. K. V. Kumar, A. Mahalanobis, and R. D. Juday, Correlation Pattern Recognition (Cambridge University, 2005). [CrossRef]
  12. A. L. Chan, S. Z. Der, and N. M. Nasrabadi, “Multistage infrared target detection,” Opt. Eng. 42, 2746–2754 (2003). [CrossRef]
  13. M. Burton and C. Benning, “Comparison of imaging infrared detection algorithms,” Proc. SPIE 302, 26–32 (1981).
  14. A. Mehmood and N. M. Nasrabadi, “Wavelet-RX anomaly detection for dual-band forward-looking infrared imagery,” Appl. Opt. 49, 4621–4632 (2010). [CrossRef] [PubMed]
  15. I. S. Reed and X. Yu, “Adaptive multi-band CFAR detection of an optical pattern with unknown spectral distribution,” IEEE Trans. Acoust. Speech Signal Process. 38, 1760–1170(1990). [CrossRef]
  16. S. G. Mallat, A Wavelet Tour of Signal Processing, 2nd ed.(Academic, 2008).
  17. H. Kwon and N. M. Nasrabadi, “Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens. 43, 388–397 (2005). [CrossRef]
  18. E. Abdelkawy and D. McGaughy, “Wavelet-based image target detection methods,” Proc. SPIE 5094, 337–347 (2003). [CrossRef]
  19. S. Wen, Y. Jiangping, and L. Jian, “Small IR target detection approach based on multiscale relative distance image,” Proc. SPIE 4077, 194–197 (2000). [CrossRef]
  20. K. Riley and A. J. Devaney, “Wavelet processing of images for target detection,” Int. J. Imaging Syst. Technol. 7, 404–420(1996). [CrossRef]
  21. R. N. Strickland and H. L. Hahn, “Wavelet transforms methods for object detection and recovery,” IEEE Trans. Image Process. 6, 724–735 (1997). [CrossRef] [PubMed]
  22. X. Yu, I. S. Reed, W. Kraske, and A. D. Stocker, “A robust adaptive multi-spectral object detection by using wavelet transform,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 1992), Vol.  99, pp. 141–144.
  23. B. Schölkopf and A. J. Samola, Learning with Kernels (MIT, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited