OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 17 — Jun. 10, 2011
  • pp: 2809–2814

Realization of fiber-based laser Doppler vibrometer with serrodyne frequency shifting

Yanlu Li, Stijn Meersman, and Roel Baets  »View Author Affiliations


Applied Optics, Vol. 50, Issue 17, pp. 2809-2814 (2011)
http://dx.doi.org/10.1364/AO.50.002809


View Full Text Article

Enhanced HTML    Acrobat PDF (404 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a laser Doppler vibrometer (LDV) based on the serrodyne frequency shifting technique. A proof-of-principle system is implemented on the basis of fiber-optic components but opens the way toward an ultracompact integrated LDV system on a silicon chip. With a low laser power of 50 μW , the serrodyne LDV was able to measure submicrometer vibrations with frequencies in the audio range.

© 2011 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(130.3060) Integrated optics : Infrared
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: January 4, 2011
Revised Manuscript: April 9, 2011
Manuscript Accepted: April 11, 2011
Published: June 9, 2011

Citation
Yanlu Li, Stijn Meersman, and Roel Baets, "Realization of fiber-based laser Doppler vibrometer with serrodyne frequency shifting," Appl. Opt. 50, 2809-2814 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-17-2809


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Gren, K. Tatar, J. Granström, N.-E. Molin, and E. V. Jansson, “Laser vibrometry measurements of vibration and sound fields of a bowed violin,” Meas. Sci. Technol. 17, 635–644 (2006). [CrossRef]
  2. L. Jacquin, D. Fabre, D. Sipp, V. Theofilis, and H. Vollmers, “Instability and unsteadiness of aircraft wake vortices,” Aerospace Sci. Technol. 7, 577–593 (2003). [CrossRef]
  3. K. R. Whittemore, S. N. Merchant, B. B. Poon, and J. J. Rosowski, “A normative study of tympanic membrane motion in humans using a laser doppler vibrometer (LDV),” Hear. Res. 187, 85–104 (2004). [CrossRef]
  4. H. van Elburg, J. Dirckx, and W. Decraemer, “High-resolution quadruple-channel heterodyne laser velocimeter based on birefringent optics,” Optik 119, 497–499 (2008). [CrossRef]
  5. H. van Elburg, J. Dirckx, and W. Decraemer, “Design and performance of a high-resolution dual-channel heterodyne laser velocimeter,” Optik 118, 345–349 (2007). [CrossRef]
  6. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. V. Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010). [CrossRef] [PubMed]
  7. Z. Sheng, L. Liu, J. Brouckaert, S. He, and D. V. Thourhout, “InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides,” Opt. Express 18, 1756–1761 (2010). [CrossRef] [PubMed]
  8. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010). [CrossRef]
  9. J. V. Campenhout, P. R. Romeo, P. Regreny, C. Seassal, D. V. Thourhout, S. Verstuyft, L. D. Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744–6749 (2007). [CrossRef] [PubMed]
  10. J. Brouckaert, G. Roelkens, D. Van Thourhout, and R. Baets, “Compact InAlAs–InGaAs metal–semiconductor–metal photodetectors integrated on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 19, 1484–1486 (2007). [CrossRef]
  11. D.-C. Su, M.-H. Chiu, and C.-D. Chen, “Simple two-frequency laser,” Precis. Eng. 18, 161–163 (1996). [CrossRef]
  12. Y.-L. Lo and C.-H. Chuang, “New synthetic-heterodyne demodulator for an optical fiber interferometer,” IEEE J. Quantum Electron. 37, 658–663 (2001). [CrossRef]
  13. N. P. Cooper, “An improved heterodyne laser interferometer for use in studies of cochlear mechanics,” J. Neurosci. Methods 88, 93–102 (1999). [CrossRef] [PubMed]
  14. M. Johansmann, G. Siegmund, and M. Pineda, “Targeting the limits of laser Doppler vibrometry,” in Proceedings of the International Disk Drive Equipment and Materials Association 2005 (International Disk Drive Equipment and Materials Association, 2005), pp. 1–12.
  15. A. T. Waz, P. R. Kaczmarek, and K. M. Abramski, “Laser-fibre vibrometry at 1550 nm,” Meas. Sci. Technol. 20, 105301 (2009). [CrossRef]
  16. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon. 1, 279–307 (2009). [CrossRef]
  17. R. C. Cumming, “The serrodyne frequency translator,” Proc. IRE 45, 175–186 (1957). [CrossRef]
  18. I. Y. Poberezhskiy, B. Bortnik, J. Chou, B. Jalali, and H. R. Fetterman, “Serrodyne frequency translation of continuous optical signals using ultrawide-band electrical sawtooth waveforms,” IEEE J. Quantum Electron. 41, 1533–1539 (2005). [CrossRef]
  19. W. Jin, L. M. Zhang, D. Uttamchandani, and B. Cuishaw, “Modified J1…J4 method for linear readout of dynamic phase changes in a fiber-optic homodyne interferometer,” Appl. Opt. 30, 4496–4499 (1991). [CrossRef] [PubMed]
  20. M. Lipson, “Compact electro-optic modulators on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 12, 1520–1526(2006). [CrossRef]
  21. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator,” Opt. Express 15, 17106–17113 (2007). [CrossRef] [PubMed]
  22. H. Yu, W. Bogaerts, and A. De Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” IEEE J. Quantum Electron. 46, 1763–1768(2010). [CrossRef]
  23. P. de Groot, “Design of error-compensating algorithms for sinusoidal phase shifting interferometry,” Appl. Opt. 48, 6788–6796 (2009). [CrossRef] [PubMed]
  24. K. Falaggis, D. P. Towers, and C. E. Towers, “Phase measurement through sinusoidal excitation with application to multi-wavelength interferometry,” J. Opt. A 11, 054008 (2009). [CrossRef]
  25. L. M. Johnson and C. H. Cox, “Serrodyne optical frequency translation with high sideband suppression,” J. Lightwave Technol. 6, 109–112 (1988). [CrossRef]
  26. G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J.-M. Fedeli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008). [CrossRef]
  27. Y. Li, S. Meersman, and R. Baets, “Optical frequency shifter on SOI using thermo-optic serrodyne modulation,” in 7th IEEE International Conference on Group IV Photonics, Beijing (IEEE, 2010), pp. 75–7. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited