OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 18 — Jun. 20, 2011
  • pp: 2836–2845

Method for studying the effects of thermal deformations on optical systems for space application

Elisa Segato, Vania Da Deppo, Stefano Debei, Giampiero Naletto, Gabriele Cremonese, and Enrico Flamini  »View Author Affiliations


Applied Optics, Vol. 50, Issue 18, pp. 2836-2845 (2011)
http://dx.doi.org/10.1364/AO.50.002836


View Full Text Article

Enhanced HTML    Acrobat PDF (1968 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, the results of the thermo-elastic analysis performed on the stereo channel of the imaging system Integrated Observatory System for the BepiColombo European Space Agency mission to Mercury are presented. The aim of the work is to determine the effects of ambient parameter variations on the equipment performance; the optical performance is changing during the mission lifetime primarily because of the optics misalignments and deformations induced by temperature variations. The camera optics and their mountings are modeled and processed by a thermo-mechanical finite element model (FEM) program, which reproduces the expected optics and structure thermo-elastic deformations in the instrument foreseen operative temperature range, i.e., between 20 ° C and 30 ° C . The FEM outputs are elaborated using a MATLAB optimization routine: an algorithm based on nonlinear least square data fitting is adopted to determine the surface equation (plane, spherical, nth polynomial) which best fits the deformed optical surfaces. The obtained surfaces are then directly imported into a ZEMAX code for sequential ray-tracing analysis. Variations of the optical spot diagrams, modulation transfer function curves, and ensquared energy are then computed. The overall analysis shows that the preferred solution for mounting the optical elements is adopting the kinematic constraints instead of using the classical glue solution.

© 2011 Optical Society of America

OCIS Codes
(110.6770) Imaging systems : Telescopes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(220.4880) Optical design and fabrication : Optomechanics
(350.4600) Other areas of optics : Optical engineering
(350.6090) Other areas of optics : Space optics
(120.6085) Instrumentation, measurement, and metrology : Space instrumentation

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: November 19, 2010
Revised Manuscript: March 31, 2011
Manuscript Accepted: March 31, 2011
Published: June 10, 2011

Citation
Elisa Segato, Vania Da Deppo, Stefano Debei, Giampiero Naletto, Gabriele Cremonese, and Enrico Flamini, "Method for studying the effects of thermal deformations on optical systems for space application," Appl. Opt. 50, 2836-2845 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-18-2836

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited