OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 18 — Jun. 20, 2011
  • pp: 2892–2898

Reconstruction dynamics of recorded holograms in photochromic glass

Mona Mihailescu, Eugen Pavel, and Vasile B. Nicolae  »View Author Affiliations


Applied Optics, Vol. 50, Issue 18, pp. 2892-2898 (2011)
http://dx.doi.org/10.1364/AO.50.002892


View Full Text Article

Enhanced HTML    Acrobat PDF (567 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have investigated the dynamics of the record–erase process of holograms in photochromic glass using continuum Nd : YVO 4 laser radiation ( λ = 532 nm ). A bidimensional microgrid pattern was formed and visualized in photochromic glass, and its diffraction efficiency decay versus time (during reconstruction step) gave us information (D, Δ n ) about the diffusion process inside the material. The recording and reconstruction processes were carried out in an off-axis setup, and the images of the reconstructed object were recorded by a CCD camera. Measurements realized on reconstructed object images using holograms recorded at a different incident power laser have shown a two-stage process involved in silver atom kinetics.

© 2011 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(210.2860) Optical data storage : Holographic and volume memories
(210.4770) Optical data storage : Optical recording
(210.4810) Optical data storage : Optical storage-recording materials
(350.3450) Other areas of optics : Laser-induced chemistry
(350.4800) Other areas of optics : Optical standards and testing

ToC Category:
Holography

History
Original Manuscript: December 8, 2010
Revised Manuscript: March 16, 2011
Manuscript Accepted: April 4, 2011
Published: June 13, 2011

Citation
Mona Mihailescu, Eugen Pavel, and Vasile B. Nicolae, "Reconstruction dynamics of recorded holograms in photochromic glass," Appl. Opt. 50, 2892-2898 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-18-2892


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for characterization of diffusion properties of photopolymerisable systems,” Opt. Express 16, 8487–8497 (2008). [CrossRef] [PubMed]
  2. J. Becker, R. Flückiger, M. Reum, F. N. Büchi, F. Marone, and M. Stampanoni, “Determination of material properties of gas diffusion layers: experiments and simulations using phase contrast tomographic microscopy,” J. Electrochem. Soc. 156, B1175–B1181 (2009). [CrossRef]
  3. R. Hadjoudj, H. Monnier, C. Roizard, and F. Lapicque, “Measurements of diffusivity of chlorinated VOCs in heavy absorption solvents using a laminar falling film contactor,” Chem. Eng. Process. 47, 1478–1483 (2008). [CrossRef]
  4. F. P. Price, P. T. Gilmore, E. L. Thomas, and R. L. Laurence, “Polymer–polymer diffusion: experimental technique,” J. Polym. Sci. 67, 33–44 (2007). [CrossRef]
  5. N. Verrier, C. Remacha, M. Brunel, D. Lebrun, and S. Coëtmellec, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18, 7807–7819(2010). [CrossRef] [PubMed]
  6. E. Pavel, I. N. Mihailescu, A. Hening, V. I. Vlad, L. Tugulea, L. Diamandescu, I. Bibicu, and M. Chipara, “Three-dimensional memory effect in fluorescent photosensitive glass activated by europium and cerium,” Opt. Lett. 23, 1304–1306 (1998). [CrossRef]
  7. E. Pavel, M. Mihailescu, V. B. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass-ceramics,” Opt. Commun. 284, 930–933 (2011). [CrossRef]
  8. A. P. Yakimovich, “Three-dimensional holographic display,” Sov. J. Quantum Electron. 11, 78–81 (1981). [CrossRef]
  9. A. K. Aggarwal, S. K. Kaura, D. P. Chhachhia, and A. K. Sharma, “Encoded reference wave security holograms with enhanced features,” J. Opt. A: Pure Appl. Opt. 6, 278–281(2004). [CrossRef]
  10. G. W. Burr, “Volumetric storage,” in Encyclopedia of Optical Engineering, R.B.Johnson and R.G.Driggers, eds. (Marcel Dekker, 2003).
  11. C. Erben, E. P. Boden, K. L. Longley, X. Shi, and B. L. Lawrence, “Ortho-nitrostilbenes in polycarbonate for holographic data storage,” Adv. Funct. Mater. 17, 2659–2666(2007). [CrossRef]
  12. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008). [CrossRef] [PubMed]
  13. C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express 17, 18279–18291 (2009). [CrossRef]
  14. J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, “Optimized holographic data storage: diffusion and randomisation,” J. Opt. A: Pure Appl. Opt. 8, 236–243 (2006). [CrossRef]
  15. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’ Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004(2005). [CrossRef] [PubMed]
  16. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models,” Appl. Opt. 41, 845–852 (2002). [CrossRef] [PubMed]
  17. J. Lawrence, F. O’Neill, and J. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621–629 (2002). [CrossRef]
  18. J. T. Sheridan and J. R. Lawrence, “Non-local response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000). [CrossRef]
  19. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010). [CrossRef]
  20. Naydenova, S. Martin, R. Jallapuram, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004). [CrossRef] [PubMed]
  21. D. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modeling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–245 (1997). [CrossRef]
  22. C. Carre and D. Lougnot, “Photopolymers for holographic recording—from standard to self-processing materials,” J. Phys. III 3, 1445–1460 (1993). [CrossRef]
  23. C. Carre, D. J. Lougnot, Y. Renotte, P. Leclere, and Y. Lion, “Photopolymerizable material for holographic recording in the 450–550 nm domain: characterization and applications II,” J. Opt. 23, 73–79 (1992). [CrossRef]
  24. D. J. Lougnot and C. Turck, “Photopolymers for holographic recording. III. time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–280 (1992). [CrossRef]
  25. Zs. Nagy, P. Koppa, F. Ujhelyi, E. Dietz, S. Frohmann, and S. Orlic, “Modeling material saturation effects in microholographic recording,” Opt. Express 15, 1732–1737 (2007). [CrossRef] [PubMed]
  26. H.M.Smith, ed., Holographic Recording Materials, Topics in Applied Physics, Vol.  20 (Springer-Verlag, 1977).
  27. H. I. Bjelkhagen, Silver Halide Recording Materials for Holography and Their Processing, Springer Series in Optical Sciences, Vol.  66 (Springer-Verlag, 1993).
  28. P. Hariharan, Optical Holography: Principles, Techniques and Applications, Cambridge Studies in Modern Optics(Cambridge University Press, 1984).
  29. D. Levy, “Recent applications of photochromic sol-gel materials,” Molec. Cryst. Liq. Cryst. 297, 31–39 (1997). [CrossRef]
  30. D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96, 153303 (2010). [CrossRef]
  31. W. H. Armistead and S. D. Stookey, “Photochromic silicate glasses sensitized by silver halides,” Science 144, 150–154(1964). [CrossRef] [PubMed]
  32. J. P. Kirk, “Hologram on photochromic glass,” Appl. Opt. 5, 1684–1685 (1966). [CrossRef] [PubMed]
  33. W. J. Baldwin, “Determination of the information storage capacity of photochromic glass with holography,” Appl. Opt. 6, 1428–1428 (1967). [CrossRef] [PubMed]
  34. L. B. Glebov, “Photochromic and photo-thermo-refractive glasses,” in Encyclopedia of Smart Materials, M.Schwartz, ed. (Wiley, 2002), pp. 770–780.
  35. H. Kogelnik, “ Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  36. J. A. Ferrari and C. D. Perciante, “Two-state model of light induced activation and thermal bleaching of photochromic glasses: theory and experiments,” Appl. Opt. 47, 3669–3673(2008). [CrossRef] [PubMed]
  37. R. J. Araujo, “Kinetics of bleaching of photochromic glass,” Appl. Opt. 7, 781–786 (1968). [CrossRef] [PubMed]
  38. L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998). [CrossRef]
  39. M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: part III. primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010). [CrossRef]
  40. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited