Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Hole-assisted dual concentric core fiber with ultralarge negative dispersion coefficient of 13 , 200 ps / nm / km

Not Accessible

Your library or personal account may give you access

Abstract

We propose a dual concentric core fiber (DCCF) with six homogeneous air holes, designed to realize a large negative dispersion coefficient. We clarify numerically that the dispersion property of the proposed DCCF can be controlled flexibly by adjusting the air-hole structure, and we realize the largest reported negative dispersion of 13,200ps/nm/km experimentally.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis and optimization of a dual-core dispersion compensation fiber based on a 12-fold photonic quasicrystal structure

Samiye Matloub, Seyed Mojtaba Hosseini, and Ali Rostami
Appl. Opt. 53(35) 8366-8373 (2014)

Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber

F. Gérôme, J.-L. Auguste, and J.-M. Blondy
Opt. Lett. 29(23) 2725-2727 (2004)

Large-effective-area dispersion-compensating fiber design based on dual-core microstructure

Gautam Prabhakar, Akshit Peer, Vipul Rastogi, and Ajeet Kumar
Appl. Opt. 52(19) 4505-4509 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved