OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 18 — Jun. 20, 2011
  • pp: 3028–3042

Impact of atmospheric clutter on Doppler-limited gas sensors in the submillimeter/terahertz

Ivan R. Medvedev, Christopher F. Neese, Grant M. Plummer, and Frank C. De Lucia  »View Author Affiliations

Applied Optics, Vol. 50, Issue 18, pp. 3028-3042 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1999 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is well known that clutter (spectral interference) from atmospheric constituents can be a severe limit for spectroscopic point sensors, especially where high sensitivity and specificity are required. In this paper, we will show for submillimeter/terahertz (SMM/THz) sensors that use cw electronic techniques the clutter limit for the detection of common target gases with absolute specificity (probability of false alarm 10 10 ) is in the ppt (1 part in 10 12 ) range or lower. This is because the most abundant atmospheric gases are either transparent to SMM/THz radiation (e.g., CO 2 ) or have spectra that are very sparse relative to the 10 5 Doppler-limited resolution elements available (e.g., H 2 O ). Moreover, the low clutter limit demonstrated for cw electronic systems in the SMM/THz is independent of system size and complexity.

© 2011 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6370) Spectroscopy : Spectroscopy, microwave
(300.6390) Spectroscopy : Spectroscopy, molecular
(280.1545) Remote sensing and sensors : Chemical analysis
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Remote Sensing and Sensors

Original Manuscript: November 24, 2010
Revised Manuscript: March 17, 2011
Manuscript Accepted: April 13, 2011
Published: June 17, 2011

Ivan R. Medvedev, Christopher F. Neese, Grant M. Plummer, and Frank C. De Lucia, "Impact of atmospheric clutter on Doppler-limited gas sensors in the submillimeter/terahertz," Appl. Opt. 50, 3028-3042 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures using terahertz waves,” Opt. Lett. 21, 2011–2013 (1996). [CrossRef] [PubMed]
  2. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing with terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998). [CrossRef]
  3. S. Albert, D. T. Petkie, R. P. A. Bettens, S. P. Belov, and F. C. De Lucia, “FASSST: a new gas-phase analytical tool,” Anal. Chem. 70, 719A–727A (1998). [PubMed]
  4. I. Medvedev, M. Behnke, and F. C. De Lucia, “Fast analysis of gases in the submillimeter/terahertz with “absolute” specificity,” Appl. Phys. Lett. 86, 154105 (2005). [CrossRef]
  5. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, E. Fertein, R. Bocquet, and G. Mouret, “Detection and quantification of multiple molecular species in mainstream cigarette smoke by continuous-wave terahertz spectroscopy,” Opt. Lett. 31, 2356–2358 (2006). [CrossRef] [PubMed]
  6. F. Hindle, C. Yang, G. Mouret, A. Cuisset, R. Bocquet, J.-F. Lampin, K. Blary, E. Peytavit, T. Akalin, and G. Ducournau, “Recent developments of an opto-electronic spectrometer for high-resolution spectroscopy,” Sensors 9, 9039–9057 (2009). [CrossRef]
  7. A. Majewski, “Terahertz spectroscopy: high-resolution terahertz spectrometer sniffs out chemicals,” Laser Focus World 44(4) (2008).
  8. R. Guo, K. Akiyama, H. Minamide, and H. Ito, “Frequency-agile terahertz-wave spectrometer for high-resolution gas sensing,” Appl. Phys. Lett. 90, 121127 (2007). [CrossRef]
  9. I. R. Medvedev, C. F. Neese, G. M. Plummer, and F. C. De Lucia, “Submillimeter spectroscopy for chemical analysis with absolute specificity,” Opt. Lett. 35, 1533–1535 (2010). [CrossRef] [PubMed]
  10. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008). [CrossRef] [PubMed]
  11. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006). [CrossRef] [PubMed]
  12. D. Marinov, J. M. Rey, M. G. Muller, and M. W. Sigrist, “Spectroscopic investigation of methylated amines by a cavity-ringdown-based spectrometer,” Appl. Opt. 46, 3981–3986(2007). [CrossRef] [PubMed]
  13. J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24, 2294–2306 (2007). [CrossRef]
  14. P. Werle, “A review of recent advances in semicondutor laser based gas monitors,” Spectrochim. Acta A54, 197–236 (1998).
  15. T. J. Geyer, G. M. Plummer, and T. A. Dunder, “FTIR Technology Development,” http://www.epa.gov/ttnemc01/ftir/reports/entrop01.html.
  16. J. H. Seinfeld, Atmospheric Chemistry and Physics of Air Pollution (Wiley, 1986).
  17. B. P. Petrucelli, T. L. Barker, and J. A. Woods, USACHPPM Technical Guide 273 (U.S. Army Center for Health Promotion and Preventive Medicine, Aberdeen, MD).
  18. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benne, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simecková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  19. H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transfer 60, 883–890 (1998). [CrossRef]
  20. H. S. P. Muller, F. Schloder, J. Stutzki, and G. Winnewisser, “The Cologne database for molecular spectroscopy,” J. Mol. Struct. 742, 215–227 (2005). [CrossRef]
  21. S. M. Fortman, I. R. Medvedev, C. F. Neese, and F. C. De Lucia, “A new approach to astrophysical spectra: the complete experimental spectrum of ethyl cyanide (CH3CH2 CN) between 570 and 645 GHz,” Astrophys. J. 714, 476–486 (2010). [CrossRef]
  22. M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989). [CrossRef]
  23. R. A. Cheville and D. R. Grischkowsky, “Far-infrared terahertz time-domain spectroscopy of flames,” Opt. Lett. 20, 1646–1648(1995). [CrossRef] [PubMed]
  24. H. Harde, J. Zhao, M. Wolff, R. A. Cheville, and D. R. Grischkowsky, “THz time-domain spectroscopy on ammonia,” J. Phys. Chem. A 105, 6038–6047 (2001). [CrossRef]
  25. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43, 2257–2266 (2004). [CrossRef] [PubMed]
  26. G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz.,” Appl. Phys. B79, 725–729 (2004).
  27. J. Manne, O. Sukhorukov, W. Jager, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath,” Appl. Opt. 45, 9230–9237(2006). [CrossRef] [PubMed]
  28. M. J. Thorpe, D. Hudson, K. D. Moll, J. Lasri, and J. Ye, “Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45–1.65 mm.,” Opt. Lett. 32, 307–309 (2007). [CrossRef] [PubMed]
  29. D. T. Petkie, T. M. Goyette, R. P. A. Bettens, S. P. Belov, S. Albert, P. Helminger, and F. C. De Lucia, “A fast scan submillimeter spectroscopic technique,” Rev. Sci. Instrum. 68, 1675–1683 (1997). [CrossRef]
  30. I. Medvedev, M. Behnke, and F. C. De Lucia, “Chemical analysis in the submillimeter spectral region with a compact solid state system,” Analyst 131, 1299–1307 (2006). [CrossRef] [PubMed]
  31. F. C. De Lucia, “Spectroscopy in the terahertz spectral region,” in Sensing with Terahertz Radiation, D.Mittleman, ed. (Springer, 2003), pp. 39–116.
  32. F. C. De Lucia, “Science and technology in the submillimeter spectral region,” Opt. Photonics News 14, 44–50 (2003). [CrossRef]
  33. F. C. De Lucia, “The submillimeter: a spectroscopist’s view,” J. Mol. Spectrosc. 261, 1–17 (2010). [CrossRef]
  34. R. A. Cheville and D. Grischkowsky, “Observation of pure rotational absorption spectra in the n2 band of hot H2O in flames,” Opt. Lett. 23, 531–533 (1998). [CrossRef]
  35. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002). [CrossRef]
  36. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995). [CrossRef]
  37. A. Majewski, A. Turner, and M. Wraback, “A high resolution terahertz spectrometer for chemical detection,” presented at the 2008 International Symposium on Spectral Sensing Research, Hoboken, New Jersey, 23–27 June 2008).
  38. S. Matsuura, P. Chen, G. A. Blake, J. C. Pearson, and H. M. Pickett, “A tunable, cavity-locked diode laser system for terahertz photomixing,” IEEE Micro. Th. Tech. 48, 380–387 (2000). [CrossRef]
  39. A. L. Betz, R. T. Boreiko, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Frequency and phase-lock control of a 3 THz quantum cascade laser,” Opt. Lett. 30, 1837–1839 (2005). [CrossRef] [PubMed]
  40. R. A. Booker, R. L. Crownover, F. C. De Lucia, and P. Helminger, “Millimeter- and submillimeter-wave spectra of the NO′ stretching mode (n6) in nitric acid,” J. Mol. Spectrosc. 128, 306–308 (1988). [CrossRef]
  41. R. A. Booker, R. L. Crownover, F. C. De Lucia, and P. Helminger, “Millimeter- and submillimeter-wave spectra of the ONO′ bending mode (n7) in nitric acid,” J. Mol. Spectrosc. 128, 62–67 (1988). [CrossRef]
  42. R. L. Crownover, R. A. Booker, F. C. De Lucia, and P. Helminger, “The rotational spectrum of nitric acid: the first five vibrational states,” J. Quant. Spectrosc. Radiat. Transfer 40, 39–46 (1988). [CrossRef]
  43. D. T. Petkie, P. Helminger, M. Behnke, I. Medvedev, and F. C. De Lucia, “The rotational spectra of the 7191, 6191, and 72 vibrational states of nitric acid,” J. Mol. Spectrosc. 233, 189–196 (2005). [CrossRef]
  44. D. Kang, V. P. Aneja, R. G. Zika, C. Farmer, and J. D. Ray, “Nonmethane hydrocarbons in the rural southeast United States national parks,” J. Geophys. Res. 106, 3133–3155 (2001). [CrossRef]
  45. A. K. Baker, F. Slemr, and C. A. M. Brenninkmeijer, “Analysis of non-methane hydrocarbons in air samples collected aboard the CARIBIC passenger aircraft,” Atmos. Meas. Tech. 3, 311–321 (2010). [CrossRef]
  46. C. F. Neese, I. M. Medvedev, G. M. Plummer, A. Frank, C. Ball, and F. C. De Lucia are preparing a manuscript to be called “Compact submillimeter/terahertz gas sensor with absolute specificity and ppt sensitivity.”
  47. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630(2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited