OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 19 — Jul. 1, 2011
  • pp: 3145–3154

Estimating optical absorption, scattering, and Grueneisen distributions with multiple-illumination photoacoustic tomography

Peng Shao, Ben Cox, and Roger J. Zemp  »View Author Affiliations

Applied Optics, Vol. 50, Issue 19, pp. 3145-3154 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (586 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



While photoacoustic methods offer significant promise for high-resolution optical contrast imaging, quantification has thus far proved challenging. In this paper, a noniterative reconstruction technique for producing quantitative photoacoustic images of both absorption and scattering perturbations is introduced for the case when the optical properties of the turbid background are known and multiple optical illumination locations are used. Through theoretical developments and computational examples, it is demonstrated that multiple-illumination photoacoustic tomography (MI-PAT) can alleviate ill- posedness due to absorption-scattering nonuniqueness and produce quantitative high-resolution reconstructions of optical absorption, scattering, and Gruneisen parameter distributions. While numerical challenges still exist, we show that the linearized MI-PAT framework that we propose has orders of magnitude improved condition number compared with CW diffuse optical tomography.

© 2011 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(110.5120) Imaging systems : Photoacoustic imaging
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(110.0113) Imaging systems : Imaging through turbid media
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Imaging Systems

Original Manuscript: December 7, 2010
Manuscript Accepted: April 21, 2011
Published: June 22, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Peng Shao, Ben Cox, and Roger J. Zemp, "Estimating optical absorption, scattering, and Grueneisen distributions with multiple-illumination photoacoustic tomography," Appl. Opt. 50, 3145-3154 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006). [CrossRef]
  2. B. T. Cox, S. R. Arridge, K. P. Kostli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distribution in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866–1875(2006). [CrossRef] [PubMed]
  3. Z. Yuan and H. B. Jiang, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88, 231101(2006). [CrossRef]
  4. J. Ripoll and V. Ntziachristos, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Phys. Rev. E 71, 031912(2005). [CrossRef]
  5. T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009). [CrossRef]
  6. B. Banerjee, S. Bagchi, R. M. Vasu, and D. Roy, “Quantitative photoacoustic tomography from boundary pressure measurements: noniterative recovery of optical absorption coefficient from the reconstructed absorbed energy map,” J. Opt. Soc. Am. A 25, 2347–2356 (2008). [CrossRef]
  7. L. Yin, Q. Wang, Q. Z. Zhang, and H. B. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett. 32, 2556–2558 (2007). [CrossRef] [PubMed]
  8. Z. Yuan, Q. Wang, and H. B. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized newton method,” Opt. Express 15, 18076–18081(2007). [CrossRef] [PubMed]
  9. B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443–455 (2009). [CrossRef]
  10. Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35, 2067–2069 (2010). [CrossRef] [PubMed]
  11. B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713(2009). [CrossRef]
  12. I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D 38, 2633–2639 (2005). [CrossRef]
  13. M. Pramanik, T. N. Erpelding, L. Jankovic, and L. V. Wang, “Tissue temperature monitoring using thermoacoustic and photoacoustic techniques,” Proc. SPIE 7564, 75641Y(2010). [CrossRef]
  14. S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” Proc. IEEE Ultrason. Symp. 2006, 405–415 (2006). [CrossRef]
  15. J. Shah, S. R. Aglyamov, K. Sokolov, T. E. Milner, and S. Y. Emelianov, “Ultrasound-based thermal and elasticity imaging to assist photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008) [CrossRef] [PubMed]
  16. S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol. 34, 299–308(2008). [CrossRef]
  17. J. Shah, S. Park, S. R. Aglyamov, T. Larson, T. Ma, L. Sokolov, K. Johnston, T. E. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024(2008). [CrossRef] [PubMed]
  18. S. H. Wang, C. W. Wei, S. H. Jee, and P. C. Li, “Photoacoustic temperature measurements for monitoring of thermal therapy,” Proc. SPIE 7177, 71771S (2009). [CrossRef]
  19. M. Pramanik and L. H. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt. 14, 054024(2009). [CrossRef] [PubMed]
  20. R. Seip and E. S. Ebbini, “Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound,” IEEE Trans. Biomed. Eng. 42, 828–839 (1995). [CrossRef] [PubMed]
  21. R. Maass-Moreno and C. A. Damianou, “Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part 1. Analytical model,” J. Acoust. Soc. Am. 100, 2514–2521(1996). [CrossRef] [PubMed]
  22. R. Seip, P. VanBaren, C. A. Cain, and E. S. Ebbini, “Noninvasive real-time multipoint temperature control for ultrasound phased array treatments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1063–1073 (1996). [CrossRef]
  23. S. J. Graham, M. J. Bronskill, and R. M. Henkelman, “Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle,” Magn. Reson. Med. 39, 198–203 (1998). [CrossRef] [PubMed]
  24. P. Steiner, R. Botnar, B. Dubno, G. G. Zimmermann, G. S. Gazelle, and J. F. Debatin, “Radio-frequency-induced thermoablation: monitoring with T1-weighted and proton-frequency-shift MR imaging in an interventional 0.5-T environment,” Radiology 206, 803–810 (1998). [PubMed]
  25. R. J. Zemp, J. Ranasinghesagara, Y. Jiang, X. Chen, and K. Mathewson, “A photoacoustic method for optical scattering measurements in turbid media,” Proc. SPIE 7177, 71770Q(2009). [CrossRef]
  26. J. C. Ranasinghesagara, Y. Jiang, X. H. Chen, K. Mathewson, and R. J. Zemp, “Photoacoustic technique for assessing optical scattering properties of turbid media,” J. Biomed. Opt. 14, 040504 (2009). [CrossRef] [PubMed]
  27. G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” Inv. Prob. 26, 085010 (2010). [CrossRef]
  28. R. J. Zemp, “Quantitative photoacoustic tomography with multiple optical sources,” Appl. Opt. 49, 3566–3572 (2010). [CrossRef] [PubMed]
  29. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884(1998). [CrossRef]
  30. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach to modelling photon transport in tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef] [PubMed]
  31. L. V. Wang, Biomedical Optics: Principles and Imaging(Wiley, 2007).
  32. H. Gao, H. Zhao, and Sl Osher, “Quantitative photoacoustic tomography,” University of California Los Angeles (UCLA) Computational and Applied Mathematics Reports (UCLA, 2011), Vol.  11–28.
  33. S. Moskow and J. C. Schotland, “Numerical studies of the inverse Born series for diffuse waves,” Inv. Prob. 25, 095007(2009). [CrossRef]
  34. H. Gao, H. Zhao, and S. Osher, “Bregman methods in quantitative photoacoustic tomography,” University of California Los Angeles (UCLA) Computational and Applied Mathematics Reports (UCLA, 2010), Vol.  10–42.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited