OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 19 — Jul. 1, 2011
  • pp: 3205–3220

On the importance of path for phase unwrapping in synthetic aperture radar interferometry

Batuhan Osmanoglu, Timothy H. Dixon, Shimon Wdowinski, and Enrique Cabral-Cano  »View Author Affiliations


Applied Optics, Vol. 50, Issue 19, pp. 3205-3220 (2011)
http://dx.doi.org/10.1364/AO.50.003205


View Full Text Article

Enhanced HTML    Acrobat PDF (2745 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase unwrapping is a key procedure in interferometric synthetic aperture radar studies, translating ambiguous phase observations to topography, and surface deformation estimates. Some unwrapping algorithms are conducted along specific paths based on different selection criteria. In this study, we analyze six unwrapping paths: line scan, maximum coherence, phase derivative variance, phase derivative variance with branch-cut, second-derivative reliability, and the Fisher distance. The latter is a new path algorithm based on Fisher information theory, which combines the phase derivative with the expected variance to get a more robust path, potentially performing better than others in the case of low image quality. In order to compare only the performance of the paths, the same unwrapping function (phase derivative integral) is used. Results indicate that the Fisher distance algorithm gives better results in most cases.

© 2011 Optical Society of America

OCIS Codes
(280.6730) Remote sensing and sensors : Synthetic aperture radar
(100.5088) Image processing : Phase unwrapping

ToC Category:
Image Processing

History
Original Manuscript: October 5, 2010
Revised Manuscript: March 21, 2011
Manuscript Accepted: March 22, 2011
Published: June 23, 2011

Citation
Batuhan Osmanoglu, Timothy H. Dixon, Shimon Wdowinski, and Enrique Cabral-Cano, "On the importance of path for phase unwrapping in synthetic aperture radar interferometry," Appl. Opt. 50, 3205-3220 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-19-3205


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Zebker and P. Rosen, “On the derivation of coseismic displacement fields using differential radar interferometry: the Landers earthquake,” in Geoscience and Remote Sensing Symposium, 1994. IGARSS ’94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, International, vol.  1, (IEEE, 1994), pp. 286–288.
  2. M. Simons, Y. Fialko, and L. Rivera, “Coseismic deformation from the 1999 Mw 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations,” Bull. Seismol. Soc. Am. 92, 1390–1402 (2002). [CrossRef]
  3. R. Bürgmann, M. Ayhan, E. Fielding, T. Wright, S. McClusky, B. Aktug, C. Demir, O. Lenk, and A. Turkezer, “Deformation during the 12 November 1999 Duzce, Turkey, earthquake, from GPS and InSAR data,” Bull. Seismol. Soc. Am. 92, 161–171 (2002). [CrossRef]
  4. R. Lanari, P. Lundgren, and E. Sansosti, “Dynamic deformation of Etna volcano observed by satellite radar interferometry,” Geophys. Res. Lett. 25, 1541–1544 (1998). [CrossRef]
  5. T. Wright, C. Ebinger, J. Biggs, A. Ayele, G. Yirgu, D. Keir, and A. Stork, “Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode,” Nature 442, 291–294 (2006). [CrossRef] [PubMed]
  6. F. Amelung, D. L. Galloway, J. W. Bell, H. A. Zebker, and R. J. Laczniak, “Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation,” Geology 27, 483–486 (1999). [CrossRef]
  7. G. Bawden, W. Thatcher, R. Stein, K. Hudnut, and G. Peltzer, “Tectonic contraction across Los Angeles after removal of groundwater pumping effects,” Nature 412, 812–815(2001). [CrossRef] [PubMed]
  8. Z. Perski, “Applicability of ERS-1 and ERS-2 InSAR for land subsidence monitoring in the Silesian coal mining region, Poland,” International Archives of Photogrammetry and Remote Sensing 32, 555–558 (1998).
  9. N. Gourmelen, F. Amelung, F. Casu, M. Manzo, and R. Lanari, “Mining-related ground deformation in Crescent Valley, Nevada: implications for sparse GPS networks,” Geophys. Res. Lett. 34, L09309 (2007). [CrossRef]
  10. R. M. Goldstein, H. Engelhardt, B. Kamb, and R. M. Frolich, “Satellite radar interferometry for monitoring ice sheet motion—application to an Antarctic ice stream,” Science 262, 1525–1530 (1993). [CrossRef] [PubMed]
  11. S. Wdowinski, F. Amelung, F. Miralles-Wilhelm, T. Dixon, and R. Carande, “Space-based measurements of sheet-flow characteristics in the Everglades wetland, Florida,” Geophys. Res. Lett. 31, L15503 (2004). [CrossRef]
  12. S. Wdowinski, S.-W. Kim, F. Amelung, T. Dixon, F. Miralles-Wilhelm, and R. Sonenshein, “Space-based detection of wetlands surface water level changes from L-band SAR interferometry,” Rem. Sens. Environ. 112, 681–696 (2008). [CrossRef]
  13. M. I. Skolnik, Introduction to Radar Systems, 2nd ed. (McGraw Hill, 1980).
  14. R. F. Hanssen, Radar Interferometry: Data Interpretation and Error Analysis (Kluwer, 2001).
  15. H. A. Zebker and J. Villasenor, “Decorrelation in interferometric radar echoes,” IEEE Trans. Geosci. Remote Sens. 30, 950–959 (1992). [CrossRef]
  16. J. Tribolet, “A new phase unwrapping algorithm,” IEEE Trans. Acoust. Speech Signal Process. 25, 170–177 (1977). [CrossRef]
  17. D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellular-automata method for phase unwrapping,” J. Opt. Soc. Am. A 4, 267–280 (1987). [CrossRef]
  18. K. Itoh, “Analysis of the phase unwrapping algorithm,” Appl. Opt. 21, 2470–2470 (1982). [CrossRef] [PubMed]
  19. H. A. Zebker and R. M. Goldstein, “Topographic mapping from interferometric synthetic aperture radar observations,” J. Geophys. Res. 91, 4993–4999 (1986). [CrossRef]
  20. R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988). [CrossRef]
  21. R. Bamler and P. Hartl, “Synthetic aperture radar interferometry,” Inverse Probl. 14, R1–R54 (1998). [CrossRef]
  22. D. J. Bone, “Fourier fringe analysis: the two-dimensional phase unwrapping problem,” Appl. Opt. 30, 3627–3632(1991). [CrossRef] [PubMed]
  23. J. M. N. Leitao and M. A. T. Figueiredo, “Absolute phase image reconstruction: a stochastic nonlinear filtering approach,” IEEE Trans. Image Process. 7, 868–882 (1998). [CrossRef]
  24. M. Kim and H. Griffiths, “Phase unwrapping of multibaseline interferometry using Kalman filtering,” presented at the 7th International Conference on Image Processing and its Applications , Manchester, UK (13–15 July 1999).
  25. O. Loffeld, H. Nies, S. Knedlik, and Y. Wang, “Phase unwrapping for SAR interferometry: a data fusion approach by Kalman filtering,” IEEE Trans. Geosci. Remote Sens. 46, 47–58 (2008). [CrossRef]
  26. J. Martinez-Espla, T. Martinez-Marin, and J. Lopez-Sanchez, “A particle filter approach for InSAR phase filtering and unwrapping,” IEEE Trans. Geosci. Remote Sens. 47, 1197–1211 (2009). [CrossRef]
  27. W. Xu and I. Cumming, “A region-growing algorithm for InSAR phase unwrapping,” IEEE Trans. Geosci. Remote Sens. 37, 124–134 (1999). [CrossRef]
  28. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994). [CrossRef]
  29. M. Pritt, “Phase unwrapping by means of multigrid techniques for interferometric SAR,” IEEE Trans. Geosci. Remote Sens. 34, 728–738 (1996). [CrossRef]
  30. M. Costantini, “A novel phase unwrapping method based on network programming,” IEEE Trans. Geosci. Remote Sens. 36, 813–821 (1998). [CrossRef]
  31. C. W. Chen and H. A. Zebker, “Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms,” J. Opt. Soc. Am. A 17, 401–414 (2000). [CrossRef]
  32. C. W. Chen and H. A. Zebker, “Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization,” J. Opt. Soc. Am. A 18, 338–351(2001). [CrossRef]
  33. C. W. Chen and H. A. Zebker, “Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models,” IEEE Trans. Geosci. Remote Sens. 40, 1709–1719 (2002). [CrossRef]
  34. J. M. Bioucas-Dias and J. Leitao, “InSAR phase unwrapping: a Bayesian approach,” in Geoscience and Remote Sensing Symposium, 2001 (IEEE, 2001), pp. 396–400.
  35. A. Ferretti, C. Prati, and F. Rocca, “Permanent scatterers in SAR interferometry,” IEEE Trans. Geosci. Remote Sens. 39, 8–20 (2001). [CrossRef]
  36. P. Berardino, G. Fornaro, R. Lanari, and E. Sansosti, “A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms,” IEEE Trans. Geosci. Remote Sens. 40, 2375–2383 (2002). [CrossRef]
  37. A. Hooper, “Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation,” Ph.D. dissertation (Stanford University, 2006).
  38. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, 1998).
  39. R. Krämer, “Auf Kalman-Filtern basierende Phasen- und Parameterestimation zur Lösung der Phasenvieldeutigkeitsproblematik bei der Höhenmodellerstellung aus SAR-Interferogrammen,” Ph.D. dissertation (Universitat-GH Siegen, 1998).
  40. M. Herráez, D. Burton, M. Lalor, and M. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41, 7437–7444 (2002). [CrossRef] [PubMed]
  41. H. Abdul-Rahman, M. Gdeisat, D. Burton, M. Lalor, F. Lilley, and C. Moore, “Fast and robust three-dimensional best path phase unwrapping algorithm,” Appl. Opt. 46, 6623–6635(2007). [CrossRef] [PubMed]
  42. E. Moore, “Machine models of self-reproduction,” in Mathematical Problems in the Biological Sciences, R.Bellman, ed. (American Mathematical Society, 1962), pp. 17–33.
  43. G. Peano, “On a curve which entirely fills a plane domain,” Math. Ann. 36–157160 (1890). [CrossRef]
  44. H. Sagan and J. Holbrook, Space-Filling Curves (Springer-Verlag, 1994). [CrossRef]
  45. C. A. Pickover, The Math Book (Sterling, 2009).
  46. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C (Cambridge University, 1992).
  47. B. R. Hunt, “Matrix formulation of the reconstruction of phase values from phase differences,” J. Opt. Soc. Am 69, 393–399(1979). [CrossRef]
  48. B. Spottiswoode, “2D phase unwrapping algorithms,” http://www.mathworks.com/matlabcentral/fileexchange/22504.
  49. J. Buckland, J. Huntley, and S. Turner, “Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm,” Appl. Opt. 34, 5100–5108 (1995). [CrossRef] [PubMed]
  50. J. Quiroga, A. González-Cano, and E. Bernabeu, “Stable-marriages algorithm for preprocessing phase maps with discontinuity sources,” Appl. Opt. 34, 5029–5038 (1995). [CrossRef] [PubMed]
  51. R. Cusack, J. M. Huntley, and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Appl. Opt. 34, 781–789 (1995). [CrossRef] [PubMed]
  52. B. Gutmann and H. Weber, “Phase unwrapping with the branch-cut method: role of phase-field direction,” Appl. Opt. 39, 4802–4816 (2000). [CrossRef]
  53. S. Karout, M. Gdeisat, D. Burton, and M. Lalor, “Residue vector, an approach to branch-cut placement in phase unwrapping: theoretical study,” Appl. Opt. 46, 4712–4727 (2007). [CrossRef] [PubMed]
  54. R. Pawula, S. Rice, and J. Roberts, “Distribution of the phase angle between two vectors perturbed by Gaussian noise,” IEEE Trans. Commun. 30, 1828–1841 (1982). [CrossRef]
  55. F. Edgeworth, “On the probable errors of frequency-constants (contd.),” J. Roy. Statist. Soc. 71, 651–678 (1908). [CrossRef]
  56. T. Cover, J. Thomas, and J. Wiley, Elements of Information Theory (Wiley, 1991). [CrossRef]
  57. B. Frieden, Physics from Fisher Information: a Unification (Cambridge University, 1998). [CrossRef]
  58. D. Just and R. Bamler, “Phase statistics of interferograms with applications to synthetic aperture radar,” Appl. Opt. 33, 4361–4368 (1994). [CrossRef] [PubMed]
  59. J. Lee, K. Hoppel, S. Mango, and A. Miller, “Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery,” IEEE Trans. Geosci. Remote Sens. 32, 1017–1028 (1994). [CrossRef]
  60. A. Ferretti, C. Prati, and F. Rocca, “Multibaseline InSAR DEM reconstruction: the wavelet approach,” IEEE Trans. Geosci. Remote Sens. 37, 705–715 (1999). [CrossRef]
  61. F. Lombardini, F. Gini, and P. Matteucci, “Application of array processing techniques to multibaseline InSAR for layover solution,” in Proceedings of the 2001 IEEE Radar Conference, 2001 (IEEE, 2002), pp. 210–215.
  62. A. Ferretti, A. Monti-Guarnieri, C. Prati, F. Rocca, and D. Massonet, InSAR Principles-Guidelines for SAR Interferometry Processing and Interpretation, (ESA, 2007), Vol.  19, Chap. Part B.
  63. J. W. Eaton, D. Bateman, and S. Hauberg, GNU Octave Manual (Network Theory, 2008).
  64. B. Kampes, “MATLAB toolbox for InSAR,” http://enterprise.lr.tudelft.nl/doris/software/insarmatlab.tar.gz.
  65. B. Kampes and S. Usai, “Doris: the Delft object-oriented radar interferometric software,” presented at the International Symposium on Operationalization of Remote Sensing, Enschede, The Netherlands, 16–20 August 1999.
  66. T. Strozzi and U. Wegmüller, “Land subsidence in Mexico City mapped by ERS differential SAR interferometry,” in Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium (IEEE, 1999), pp. 1940–1942.
  67. E. Cabral-Cano, T. H. Dixon, F. Miralles-Wilhelm, O. Diaz-Molina, O. Sanchez-Zamora, and R. E. Carande, “Space geodetic imaging of rapid ground subsidence in Mexico City,” Geol. Soc. Am. Bull. 120, 1556–1566 (2008). [CrossRef]
  68. P. López-Quiroz, M. Doin, F. Tupin, P. Briole, and J. Nicolas, “Time series analysis of Mexico City subsidence constrained by radar interferometry,” J. Appl. Geophys. 69, 1–15(2009). [CrossRef]
  69. H. Friis, “Noise figures of radio receivers,” Proc. IREE Aust. 32, 419–422 (1944). [CrossRef]
  70. J. W. Tukey, Exploratory Data Analysis, Behavioral Science: Quantitative Methods (Addison-Wesley, 1977).
  71. E. Lehmann and G. Casella, Theory of Point Estimation (Springer, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited